13 research outputs found

    Habitat-Mediated Facilitation and Counteracting Ecosystem Engineering Interactively Influence Ecosystem Responses to Disturbance

    Get PDF
    Recovery of an ecosystem following disturbance can be severely hampered or even shift altogether when a point disturbance exceeds a certain spatial threshold. Such scale-dependent dynamics may be caused by preemptive competition, but may also result from diminished self-facilitation due to weakened ecosystem engineering. Moreover, disturbance can facilitate colonization by engineering species that alter abiotic conditions in ways that exacerbate stress on the original species. Consequently, establishment of such counteracting engineers might reduce the spatial threshold for the disturbance, by effectively slowing recovery and increasing the risk for ecosystem shifts to alternative states. We tested these predictions in an intertidal mudflat characterized by a two-state mosaic of hummocks (humps exposed during low tide) dominated by the sediment-stabilizing seagrass Zostera noltii) and hollows (low-tide waterlogged depressions dominated by the bioturbating lugworm Arenicola marina). In contrast to expectations, seagrass recolonized both natural and experimental clearings via lateral expansion and seemed unaffected by both clearing size and lugworm addition. Near the end of the growth season, however, an additional disturbance (most likely waterfowl grazing and/or strong hydrodynamics) selectively impacted recolonizing seagrass in the largest (1 m2) clearings (regardless of lugworm addition), and in those medium (0.25 m2) clearings where lugworms had been added nearly five months earlier. Further analyses showed that the risk for the disturbance increased with hollow size, with a threshold of 0.24 m2. Hollows of that size were caused by seagrass removal alone in the largest clearings, and by a weaker seagrass removal effect exacerbated by lugworm bioturbation in the medium clearings. Consequently, a sufficiently large disturbance increased the vulnerability of recolonizing seagrass to additional disturbance by weakening seagrass engineering effects (sediment stabilization). Meanwhile, the counteracting ecosystem engineering (lugworm bioturbation) reduced that threshold size. Therefore, scale-dependent interactions between habitat-mediated facilitation, competition and disturbance seem to maintain the spatial two-state mosaic in this ecosystem

    Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    Get PDF
    <div><p>Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (<i>Trachemys scripta elegans</i>) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~13/turtleor 13/turtle or ~20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.</p></div
    corecore