54,692 research outputs found

    Giant Radio Pulses from the Crab Pulsar

    Full text link
    Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz (Moffett & Hankins, 1996). This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ~6.7 x 10^4 erg cm^-3 and brightness temperatures of 10^31 K.Comment: accepted by Advances in Space Research, to appear in the 35th COSPAR assembly proceeding

    Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole

    Full text link
    We solve a class of boundary value problems for the stationary axisymmetric Einstein equations corresponding to a disk of dust rotating uniformly around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.Comment: 46 page

    The magnetoresistance tensor of La(0.8)Sr(0.2)MnO(3)

    Full text link
    We measure the temperature dependence of the anisotropic magnetoresistance (AMR) and the planar Hall effect (PHE) in c-axis oriented epitaxial thin films of La(0.8)Sr(0.2)MnO(3), for different current directions relative to the crystal axes, and show that both AMR and PHE depend strongly on current orientation. We determine a magnetoresistance tensor, extracted to 4th order, which reflects the crystal symmetry and provides a comprehensive description of the data. We extend the applicability of the extracted tensor by determining the bi-axial magnetocrystalline anisotropy in our samples

    25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

    Get PDF
    We report on the spectral properties of a diode laser with a tunable external cavity in integrated optics. Even though the external cavity is short compared to other small-bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio (SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565 nm).Comment: 8 pages, 7 figure

    Slowly rotating voids in cosmology

    Get PDF
    We consider a spacetime consisting of an empty void separated from an almost Friedmann-Lema\^\i tre-Robertson-Walker (FLRW) dust universe by a spherically symmetric, slowly rotating shell which is comoving with the cosmic dust. We treat in a unified manner all types of the FLRW universes. The metric is expressed in terms of a constant characterizing the angular momentum of the shell, and parametrized by the comoving radius of the shell. Treating the rotation as a first order perturbation, we compute the dragging of inertial frames as well as the apparent motion of distant stars within the void. Finally, we discuss, in terms of in principle measurable quantities, 'Machian' features of the model.Comment: 21 pages, 5 figures, REVTex, accepted for publication in Class.Quant.Gravit

    Relativistic Static Thin Disks: The Counter-Rotating Model

    Get PDF
    A detailed study of the Counter-Rotating Model (CRM) for generic finite static axially symmetric thin disks with nonzero radial pressure is presented. We find a general constraint over the counter-rotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counter-rotating perfect fluids. We also found expressions for the energy density and pressure of the counter-rotating fluids. Then we shown that, in general, there is not possible to take the two counter-rotating fluids as circulating along geodesics neither take the two counter-rotating tangential velocities as equal and opposite. An specific example is studied where we obtain some CRM with well defined counter-rotating tangential velocities and stable against radial perturbations. The CRM obtained are in agree with the strong energy condition, but there are regions of the disks with negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review

    Geodesic Deviation in Kaluza-Klein Theories

    Full text link
    We study in detail the equations of the geodesic deviation in multidimensional theories of Kaluza-Klein type. We show that their 4-dimensional space-time projections are identical with the equations obtained by direct variation of the usual geodesic equation in the presence of the Lorentz force, provided that the fifth component of the deviation vector satisfies an extra constraint derived here.Comment: 5 pages, Revtex, 1 figure. To appear in Phys. Rev. D (Brief Report

    Retrodirective transponder feasibility experiment

    Get PDF
    Test program on feasibility of digital phase measuring subsystem of pulse-coherent retrodirective transponde
    corecore