2,225 research outputs found
Instability of (1+1) de sitter space in the presence of interacting fields
Instabilities of two dimensional (1+1) de Sitter space induced by interacting
fields are studied. As for the case of flat Minkowski space, several
interacting fermion models can be translated into free boson ones and vice
versa. It is found that interacting fermion theories do not lead to any
instabilities, while the interacting bosonic sine-Gordon model does lead to a
breakdown of de Sitter symmetry and to the vanishing of the vacuum expectation
value of the S matrix.Comment: 7 page
Numerical comparison between a Gyrofluid and Gyrokinetic model investigating collisionless magnetic reconnection
The first detailed comparison between gyrokinetic and gyrofluid simulations
of collisionless magnetic reconnection has been carried out. Both the linear
and nonlinear evolution of the collisionless tearing mode have been analyzed.
In the linear regime, we have found a good agreement between the two approaches
over the whole spectrum of linearly unstable wave numbers, both in the drift
kinetic limit and for finite ion temperature. Nonlinearly, focusing on the
small- regime, with indicating the standard tearing
stability parameter, we have compared relevant observables such as the
evolution and saturation of the island width, as well as the island oscillation
frequency in the saturated phase.The results are basically the same, with small
discrepancies only in the value of the saturated island width for moderately
high values of . Therefore, in the regimes investigated here, the
gyrofluid approach can describe the collisionless reconnection process as well
as the more complete gyrokinetic model.Comment: Accepted for publication on Physics of Plasma
A finite element based formulation for sensitivity studies of piezoelectric systems
Sensitivity Analysis is a branch of numerical analysis which aims to quantify the affects that variability in the parameters of a numerical model have on the model output. A finite element based sensitivity analysis formulation for piezoelectric media is developed here and implemented to simulate the operational and sensitivity characteristics of a piezoelectric based distributed mode actuator (DMA). The work acts as a starting point for robustness analysis in the DMA technology
“It gave me something big in my life to wonder and think about which took over the space … and not MS”: Managing well-being in multiple sclerosis through art-making
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2014 Informa UK Ltd.Background and aim: Individuals living with Multiple Sclerosis (MS) often face progressive loss of function, uncertainty and disruption to self-image and valued roles. Previous studies show that creative self-expression is valued by some people living with long-term illness, yet its meaning for people living with MS is unclear. This research study explored the meanings of leisure-based visual art-making for people living with MS. Method: This qualitative study followed guidelines for Interpretative Phenomenological Analysis (IPA). Single semi-structured interviews were conducted with five adults (2 males; 3 females; 40–65 years), recruited from MS Ireland. Findings: Participants valued art-making for contributing to a more satisfying way of life; for filling occupational voids and using time well. Deep immersion offered respite from worry about illness. Creative classes offered social camaraderie and opportunities for learning and development. Art-making processes and products were highly affirmative, increasing emotional well-being and promoting self-worth. Most felt that they expressed valued aspects of self through their art. Art-making appeared to assist with identity maintenance, accommodating functional losses associated with MS whilst opening “new doors”. Conclusion: Art-making offered a multi-faceted means of supporting identity and increasing fulfilment in lives that were restricted in many ways by MS
Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders
BACKGROUND: Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. FINDINGS: Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3’-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. CONCLUSIONS: These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders
Superlinear Scaling for Innovation in Cities
Superlinear scaling in cities, which appears in sociological quantities such
as economic productivity and creative output relative to urban population size,
has been observed but not been given a satisfactory theoretical explanation.
Here we provide a network model for the superlinear relationship between
population size and innovation found in cities, with a reasonable range for the
exponent.Comment: 5 pages, 5 figures, 1 table, submitted to Phys. Rev. E; references
corrected; figures corrected, references and brief discussion adde
On neoclassical impurity transport in stellarator geometry
The impurity dynamics in stellarators has become an issue of moderate concern
due to the inherent tendency of the impurities to accumulate in the core when
the neoclassical ambipolar radial electric field points radially inwards (ion
root regime). This accumulation can lead to collapse of the plasma due to
radiative losses, and thus limit high performance plasma discharges in
non-axisymmetric devices.\\ A quantitative description of the neoclassical
impurity transport is complicated by the breakdown of the assumption of small
drift and trapping due to the electrostatic
potential variation on a flux surface compared to those due to
the magnetic field gradient. The present work examines the impact of this
potential variation on neoclassical impurity transport in the Large Helical
Device (LHD) stellarator. It shows that the neoclassical impurity transport can
be strongly affected by . The central numerical tool used is the
particle in cell (PIC) Monte Carlo code EUTERPE. The
used in the calculations is provided by the neoclassical code GSRAKE. The
possibility of obtaining a more general self-consistently with
EUTERPE is also addressed and a preliminary calculation is presented.Comment: 11 pages, 15 figures, presented at Joint Varenna-Lausanne
International Workshop on Theory of Fusion Plasmas, 2012. Accepted for
publication to Plasma Phys. and Control. Fusio
Resting vs. active: a meta-analysis of the intra- and inter-specific associations between minimum, sustained, and maximum metabolic rates in vertebrates
Variation in aerobic capacity has far reaching consequences for the physiology, ecology, and evolution of vertebrates. Whether at rest or active, animals are constrained to operate within the energetic bounds determined by their minimum (minMR) and sustained or maximum metabolic rates (upperMR). MinMR and upperMR can differ considerably among individuals and species but are often presumed to be mechanistically linked to one another. Specifically, minMR is thought to reflect the idling cost of the machinery needed to support upperMR. However, previous analyses based on limited datasets have come to conflicting conclusions regarding the generality and strength of their association.
Here we conduct the first comprehensive assessment of their relationship, based on a large number of published estimates of both the intra-specific (n = 176) and inter-specific (n = 41) phenotypic correlations between minMR and upperMR, estimated as either exercise-induced maximum metabolic rate (VO2max), cold-induced summit metabolic rate (Msum), or daily energy expenditure (DEE).
Our meta-analysis shows that there is a general positive association between minMR and upperMR that is shared among vertebrate taxonomic classes. However, there was stronger evidence for intra-specific correlations between minMR and Msum and between minMR and DEE than there was for a correlation between minMR and VO2max across different taxa. As expected, inter-specific correlation estimates were consistently higher than intra-specific estimates across all traits and vertebrate classes.
An interesting exception to this general trend was observed in mammals, which contrast with birds and exhibit no correlation between minMR and Msum. We speculate that this is due to the evolution and recruitment of brown fat as a thermogenic tissue, which illustrates how some species and lineages might circumvent this seemingly general association.
We conclude that, in spite of some variability across taxa and traits, the contention that minMR and upperMR are positively correlated generally holds true both within and across vertebrate species. Ecological and comparative studies should therefore take into consideration the possibility that variation in any one of these traits might partly reflect correlated responses to selection on other metabolic parameters
- …
