48 research outputs found

    Resident macrophages influence stem cell activity in the mammary gland

    Get PDF
    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells influence have not been determined. Here we have explored a role for macrophages in regulating mammary stem cell (MaSC) activity, by assessing the ability of MaSCs to reconstitute a mammary gland in a macrophage-depleted fat pad. Methods Two different in vivo models were used to deplete macrophages from the mouse mammary fat pad, allowing us to examine the effect of macrophage deficiency on the mammary repopulating activity of MaSCs. Both the Csf1(op/op) mice and clodronate liposome-mediated ablation models entailed transplantation studies using the MaSC-enriched population. Results We show that mammary repopulating ability is severely compromised when the wild-type MaSC-enriched subpopulation is transplanted into Csf1(op/op) fat pads. In reciprocal experiments, the MaSC-enriched subpopulation from Csf1(op/op) glands had reduced regenerative capacity in a wildtype environment. Utilizing an alternative strategy for selective depletion of macrophages from the mammary gland, we demonstrate that co-implantation of the MaSC-enriched subpopulation with clodronate-liposomes leads to a marked decrease in repopulating frequency and outgrowth potential. Conclusions Our data reveal a key role for mammary gland macrophages in supporting stem/progenitor cell function and suggest that MaSCs require macrophage-derived factors to be fully functional. Macrophages may therefore constitute part of the mammary stem cell nich

    Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice

    Get PDF
    Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice

    Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40

    Get PDF
    SGN-40 is a therapeutic antibody targeting CD40, which induces potent anti-lymphoma activities via direct apoptotic signalling cells and by cell-mediated cytotoxicity. Here we show antibody-dependent cellular phagocytosis (ADCP) by macrophages to contribute significantly to the therapeutic activities and that the antitumour effects of SGN-40 depend on Fc interactions

    Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice

    Get PDF
    Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease

    Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration.</p> <p>Methods</p> <p>Mouse organotypic hippocampal slice cultures were treated with <it>N</it>-methyl-D-aspartic acid (NMDA) to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia.</p> <p>Results</p> <p>Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM <it>N</it>-methyl-D-aspartic acid (NMDA) induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA.</p> <p>Conclusions</p> <p>Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.</p

    The dot-probe task to measure emotional attention: A suitable measure in comparative studies?

    Get PDF

    Implanted biomaterials: Dissecting fibrosis

    No full text

    Antigen processing of vesicular stomatitis virus in situ. Interdigitating dendritic cells present viral antigens independent of marginal dendritic cells but fail to prime CD4+ and CD8+ T cells

    No full text
    Acute macrophage (Mφ) depletion, using a liposome-mediated ‘suicide technique’, markedly suppressed priming of splenic CD4+ and CD8+ T-cell responses to vesicular stomatitis virus (VSV). However, phagocytic marginal dendritic cells (MDC), but not interdigitating dendritic cells (IDC), are now known to be also depleted by this technique. To clarify the role splenic dendritic cell (DC) subsets and Mφ play in priming for a virus-specific T-cell-mediated immune response, DC and Mφ were purified from VSV-infected mice and assayed for the presence of epitopes recognized by VSV helper T (Th) cells and cytotoxic T lymphocytes (CTL). Antigen pulse experiments performed in situ demonstrated that VSV Th cell and CTL epitopes became transiently associated only with DC, but not Mφ or B cells, indicating that DC represent the critical antigen-presenting cell (APC) population in vivo for this virus. The failure of MDC/Mφ-deficient mice to become primed was not due to the complete elimination of antigen-presenting DC because VSV peptide/class I and II complexes were detected on IDC following lipsome-mediated elimination of phagocytic cells. However, the VSV-induced chemokine response was dramatically suppressed in these mice. Thus, despite the expression of VSV peptide/class I and II complexes, IDC are not sufficient to prime VSV Th cells in the absence of MDC and/or splenic Mφ

    Rapid induction of inflammatory lipid mediators by the inflammasome in vivo

    No full text
    Detection of microbial products by host inflammasomes is critical for innate immune surveillance. Inflammasomes activate the CASPASE-1 (CASP1) protease, which processes the cytokines interleukin(IL)-1β and -18, and initiates a lytic host cell death called pyroptosis(1). To identify novel CASP1 functions in vivo, we devised a strategy for cytosolic delivery of bacterial flagellin, a specific ligand for the NAIP5 (NLR family, apoptosis inhibitory protein 5)/NLRC4 (NLR family, CARD domain containing 4) inflammasome(2–4). Here we show that systemic inflammasome activation by flagellin leads to loss of vascular fluid into the intestine and peritoneal cavity, resulting in rapid (< 30 minutes) death in mice. This unexpected response depends on the inflammasome components NAIP5, NLRC4, and CASP1, but is independent of IL-1β/-18 production. Instead, inflammasome activation results, within minutes, in an ‘eicosanoid storm’ – a pathological release of signaling lipids that rapidly initiate inflammation and vascular fluid loss. Mice deficient in cyclooxygenase-1 (COX-1), a critical enzyme in prostaglandin biosynthesis, are resistant to these rapid pathological effects of systemic inflammasome activation by either flagellin or anthrax lethal toxin. Inflammasome-dependent biosynthesis of eicosanoids is mediated by activation of cPLA2 (cytosolic phospholipase A2) in resident peritoneal macrophages, which are specifically primed for production of eicosanoids by high expression of eicosanoid biosynthetic enzymes. Thus, our results identify eicosanoids as a novel cell type-specific signaling output of the inflammasome with dramatic physiological consequences in vivo
    corecore