54 research outputs found
Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307
© 2019 Oxford University Press. All rights reserved. Objectives: Recent reports indicate the emergence of a new carbapenemase-producing Klebsiella pneumoniae clone, ST307. We sought to better understand the global epidemiology and evolution of this clone and evaluate its association with antimicrobial resistance (AMR) genes. Methods: We collated information from the literature and public databases and performed a comparative analysis of 95 ST307 genomes (including 37 that were newly sequenced). Results: We show that ST307 emerged in the mid-1990s (nearly 20 years prior to its first report), is already globally distributed and is intimately associated with a conserved plasmid harbouring the blaCTX-M-15 ESBL gene and several other AMR determinants. Conclusions: Our findings support the need for enhanced surveillance of this widespread ESBL clone in which carbapenem resistance has occasionally emerged
WGS Analysis and Interpretation in Clinical and Public Health Microbiology Laboratories: What Are the Requirements and How Do Existing Tools Compare?
Recent advances in DNA sequencing technologies have the potential to transform the field of clinical and public health microbiology, and in the last few years numerous case studies have demonstrated successful applications in this context. Among other considerations, a lack of user-friendly data analysis and interpretation tools has been frequently cited as a major barrier to routine use of these techniques. Here we consider the requirements of microbiology laboratories for the analysis, clinical interpretation and management of bacterial whole-genome sequence (WGS) data. Then we discuss relevant, existing WGS analysis tools. We highlight many essential and useful features that are represented among existing tools, but find that no single tool fulfils all of the necessary requirements. We conclude that to fully realise the potential of WGS analyses for clinical and public health microbiology laboratories of all scales, we will need to develop tools specifically with the needs of these laboratories in mind
Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales
Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity and evolutionary dynamics across different taxonomic scales has not been investigated in detail. Here, we focused on the bacterial order Enterobacteriales (including the medically relevant Enterobacteriaceae), to carry out comparative genomics of two SP locus synthesis regions, cps and kps, using 27,334 genomes from 45 genera. We identified high-quality cps loci in 22 genera and kps in 11 genera, around 4% of which were detected in multiple species. We found SP loci to be highly dynamic genetic entities: their evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In spite of that, we found the presence of (near-)identical locus structures in distant taxonomic backgrounds that could not be explained by recent exchange, pointing to long-term selective preservation of locus structures in some populations. Our results reveal differences in evolutionary dynamics driving SP diversity within different bacterial species, with lineages of Escherichia coli, Enterobacter hormaechei and Klebsiella aerogenes most likely to share SP loci via recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens most likely to share SP loci via other mechanisms such as long-term preservation. Overall, the evolution of SP loci in Enterobacteriales is driven by a range of evolutionary forces and their dynamics and relative importance varies between different species
Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974.
BACKGROUND: Antimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974. In this study the genomes of 38 pneumococci isolated prior to 1974 were probed for the presence of tet(M), cat, erm(B), mef(A/E) and int (integrase) to indicate the presence of Tn916/Tn5252-like elements. RESULTS: Two Tn916-like, tet(M)-containing, elements were identified among pneumococci dated 1967 and 1968. The former element was highly similar to that of the PMEN1 multidrug-resistant, globally-distributed pneumococcal reference strain, which was isolated in 1984. The latter element was associated with a streptococcal phage. A third, novel genetic element, designated ICESpPN1, was identified in the genome of an isolate dated 1972. ICESpPN1 contained a region of similarity to Tn5252, a region of similarity to a pneumococcal pathogenicity island and novel lantibiotic synthesis/export-associated genes. CONCLUSIONS: These data confirm the existence of pneumococcal Tn916 elements in the first decade within which pneumococcal tetracycline resistance was described. Furthermore, the discovery of ICESpPN1 demonstrates the dynamic variability of pneumococcal genetic elements and is contrasted with the evidence for Tn916 stability
A platform for leveraging next generation sequencing for routine microbiology and public health use
Even with the advent of next-generation sequencing (NGS) technologies which have revolutionised the field of bacterial genomics in recent years, a major barrier still exists to the implementation of NGS for routine microbiological use (in public health and clinical microbiology laboratories). Such routine use would make a big difference to investigations of pathogen transmission and prevention/control of (sometimes lethal) infections. The inherent complexity and high frequency of data analyses on very large sets of bacterial DNA sequence data, the ability to ensure data provenance and automatically track and log all analyses for audit purposes, the need for quick and accurate results, together with an essential user-friendly interface for regular non-technical laboratory staff, are all critical requirements for routine use in a public health setting. There are currently no systems to answer positively to all these requirements, in an integrated manner. In this paper, we describe a system for sequence analysis and interpretation that is highly automated and tackles the issues raised earlier, and that is designed for use in diagnostic laboratories by healthcare workers with no specialist bioinformatics knowledge
- …