19 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Bio-composting oil palm waste for improvement of soil fertility

    Get PDF
    Sources of bio-compost as agro-industrial wastes includes wide range of oil palm wastes viz. waste, biomass, palm kernels, empty fruit bunch, mill effluent, trunk and frond compost. Various composting processes are summarized in brief with distinct reference of oil–palm composting covering aerated static pile, and co-composting with earthworms (vermicomposting). However, in-vessel composting and windrow composting has meritorious advantages in composting. This review article refers to various significant roles played by microorganisms associated. Noteworthy study of bio-compost applications and procedures are correspondingly glosses framework of ecological, economical and agro-ecosystemic benefits

    Sintering-Induced Nucleation and Growth of Noble Metal Nanoparticles for Plasmonic Resonance Ceramic Color

    No full text
    This study demonstrates the formation of nanoparticles (NPs) from metal salts within ceramic glazes, such that the use of this colorant technology is more accessible to artisans, employs less metal content, is less environmentally harmful, and allows for the use of traditional kilns. Gold NPs have been demonstrated to possess a specific, low material loading use as a ceramic glaze colorant via plasmon resonance. Pre-synthesized gold NPs that are added to ceramic glazes have been found to significantly change in size after firing in both reductive and oxidative atmospheres, but still maintain some size relationships and color properties. Unfortunately, it is not viable for the art community to fabricate and employ gold NP systems with high precision in a studio setting; however, the use of noble metal salts or metal oxides are realistic. To that end, this work investigates spontaneous gold and silver NP synthesis by the firing-induced development of NPs from metallic salts included within the glaze materials. Glaze samples with gold and silver salts are fired in reductive and oxidative environments, yielding a range of surface plasmon coloring effects for ceramic coloring. Additionally, the use of gold NP waste (precipitated Au NPs waste) was added to wet ceramic glazes to investigate firing effects on NPs precipitate and potential use as an alternative colorant. Sintering-induced NP nucleation and growth was observed after firing in both oxidation and reduction environments, although to differing degrees. The direct noble metal salt application process eliminates the need for preliminary gold NP synthesis, thus allowing for more practical and environmentally friendly methods in creating plasmonic resonance ceramic coloring, potentially reflective of the processes employed in ancient nanoparticle glasses
    corecore