4,746 research outputs found

    Role of the anterior cruciate ligament, anterolateral complex, and lateral meniscus posterior root in anterolateral rotatory knee instability: a biomechanical study

    Get PDF
    BACKGROUND: Injuries to the anterior cruciate ligament (ACL), Kaplan fibers (KFs), anterolateral capsule/ligament (C/ALL), and lateral meniscus posterior root (LMPR) have been separately linked to anterolateral instability. PURPOSE: To investigate the contributions of the ACL, KFs, C/ALL, and LMPR to knee stability and to measure instabilities resulting from their injury. STUDY DESIGN: Controlled laboratory study. METHODS: Ten fresh-frozen human knees were tested robotically to determine restraints of knee laxity at 0° to 90° of flexion. An 88-N anterior-posterior force (anterior and posterior tibial translation), 5-N·m internal-external rotation, and 8-N·m valgus-varus torque were imposed and intact kinematics recorded. The kinematics were replayed after sequentially cutting the structures (order varied) to calculate their contributions to stability. Another 10 knees were tested in a kinematics rig with optical tracking to measure instabilities after sequentially cutting the structures across 0° to 100° of flexion. One- and 2-way repeated-measures analyses of variance with Bonferroni correction were used to find significance (P 30° of flexion. Combined KFs + C/ALL injury substantially increased anterolateral rotational instability while isolated injury of either did not. LMPR deficiency did not cause significant instability with the ACL intact. CLINICAL RELEVANCE: This study is a comprehensive biomechanical sectioning investigation of the knee stability contributions of the ACL, anterolateral complex, and LMPR and the instability after their transection. The ACL is significant in controlling internal rotation only in extension. In flexion, the KFs are dominant, synergistic with the C/ALL. LMPR tear has an insignificant effect with the ACL intact

    Redesigning metal interference screws can improve ease of insertion while maintaining fixation of soft-tissue anterior cruciate ligament reconstruction grafts

    Get PDF
    Purpose: To compare the fixation strength and loads on insertion of a titanium alloy interference screw with a modified tip against a conventional titanium interference screw. Methods: Slippage of bovine digital extensor tendons (as substitutes for human tendon grafts) under cyclic loading and interference fixation strength under a pullout test were recorded in 10 cadaveric knees, with 2 tunnels drilled in each femur and tibia to provide pair-wise comparisons between the modified-tip screw (MS) and conventional screw (CS). To analyze screw insertion, 10 surgeons blindly inserted pairs of the MS and CS into bone-substitute blocks (with polyester shoelaces as graft substitutes), with insertion loads measured using a force/torque sensor. Results: No differences were found between the MS and CS either in graft slippage from the femur (P = .661) or tibia (P = .950) or in ultimate load to failure from the femur (P = .952) or tibia (P = .126). On insertion, the MS required less axial force application (78 ± 38 N, P = .001) and fewer attempted turns (2 ± 1, P < .001) to engage with the bone tunnel than the CS (99 ± 43 N and 4 ± 4, respectively). In 90% of the paired insertion tests, the screw identified by the surgeon as being easier to initially insert was the MS. Conclusions: The MS was found to be easier to engage with the bone tunnel and initially insert than the CS while still achieving similar immediate postsurgical fixation strength. Clinical Relevance: The study shows that screw designs can be improved to ease insertion into a bone tunnel, which should reduce any likelihood of ligament reconstruction graft damage

    Efferocytes release extracellular vesicles to resolve inflammation and tissue injury via prosaposin-GPR37 signaling.

    Get PDF
    Macrophages release soluble mediators following efferocytic clearance of apoptotic cells to facilitate intercellular communication and promote the resolution of inflammation. However, whether inflammation resolution is modulated by extracellular vesicles (EVs) and vesicular mediators released by efferocytes is not known. We report that efferocyte-derived EVs express prosaposin, which binds to macrophage GPR37 to increase expression of the efferocytosis receptor Tim4 via an ERK-AP1-dependent signaling axis, leading to increased macrophage efferocytosis efficiency and accelerated resolution of inflammation. Neutralization and knockdown of prosaposin or blocking GRP37 abrogates the pro-resolution effects of efferocyte-derived EVs in vivo. Administration of efferocyte-derived EVs in a murine model of atherosclerosis is associated with an increase in lesional macrophage efferocytosis efficiency and a decrease in plaque necrosis and lesional inflammation. Thus, we establish a critical role for efferocyte-derived vesicular mediators in increasing macrophage efferocytosis efficiency and accelerating the resolution of inflammation and tissue injury

    Criteria for the use of omics-based predictors in clinical trials.

    Get PDF
    The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to 'omics'-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to specimens, assays, mathematical modelling, clinical trial design, and ethical, legal and regulatory aspects. Funding bodies and journals are encouraged to consider the checklist, which they may find useful for assessing study quality and evidence strength. The checklist will be used to evaluate proposals for NCI-sponsored clinical trials in which omics tests will be used to guide therapy

    The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach

    Get PDF
    (14)C-Labelled octulose phosphates were formed during photosynthetic (14)CO(2) fixation and were measured in spinach leaves and chloroplasts. Because mono- and bisphosphates of d-glycero-d-ido-octulose are the active 8-carbon ketosugar intermediates of the L-type pentose pathway, it was proposed that they may also be reactants in a modified Calvin–Benson–Bassham pathway reaction scheme. This investigation therefore initially focussed only on the ido-epimer of the octulose phosphates even though (14)C-labelled d-glycero-d-altro-octulose mono- and bisphosphates were also identified in chloroplasts and leaves. (14)CO(2) predominantly labelled positions 5 and 6 of d-glycero-d-ido-octulose 1,8-P(2) consistent with labelling predictions of the modified scheme. The kinetics of (14)CO(2) incorporation into ido-octulose was similar to its incorporation into some traditional intermediates of the path of carbon, while subsequent exposure to (12)CO(2) rapidly displaced the (14)C isotope label from octulose with the same kinetics of label loss as some of the confirmed Calvin pathway intermediates. This is consistent with octulose phosphates having the role of cyclic intermediates rather than synthesized storage products. (Storage products don’t rapidly exchange isotopically labelled carbons with unlabelled CO(2).) A spinach chloroplast extract, designated stromal enzyme preparation (SEP), catalysed and was used to measure rates of CO(2) assimilation with Calvin cycle intermediates and octulose and arabinose phosphates. Only pentose (but not arabinose) phosphates and sedoheptulose 7-phosphate supported CO(2) fixation at rates in excess of 120 μmol h(−1) mg(−1) Chl. Rates for octulose, sedoheptulose and fructose bisphosphates, octulose, hexose and triose monophosphates were all notably less than the above rate and arabinose 5-phosphate was inactive. Altro-octulose phosphates were more active than phosphate esters of the ido-epimer. The modified scheme proposed a specific phosphotransferase and SEP unequivocally catalysed reversible phosphate transfer between sedoheptulose bisphosphate and d-glycero-d-ido-octulose 8-phosphate. It was also initially hypothesized that arabinose 5-phosphate, an L-Type pentose pathway reactant, may have a role in a modified Calvin pathway. Arabinose 5-phosphate is present in spinach chloroplasts and leaves. Radiochromatography showed that (14)C-arabinose 5-phosphate with SEP, but only in the presence of an excess of unlabelled ribose 5-phosphate, lightly labelled ribulose 5-phosphate and more heavily labelled hexose and sedoheptulose mono- and bisphosphates. However, failure to demonstrate any CO(2) fixation by arabinose 5-phosphate as sole substrate suggested that the above labelling may have no metabolic significance. Despite this arabinose and ribose 5-phosphates are shown to exhibit active roles as enzyme co-factors in transaldolase and aldolase exchange reactions that catalyse the epimeric interconversions of the phosphate esters of ido- and altro-octulose. Arabinose 5-phosphate is presented as playing this role in a New Reaction Scheme for the path of carbon, where it is concluded that slow reacting ido-octulose 1,8 bisphosphate has no role. The more reactive altro-octulose phosphates, which are independent of the need for phosphotransferase processing, are presented as intermediates in the new scheme. Moreover, using the estimates of phosphotransferase activity with altro-octulose monophosphate as substrate allowed calculation of the contributions of the new scheme, that ranged from 11% based on the intact chloroplast carboxylation rate to 80% using the carboxylation rate required for the support of octulose phosphate synthesis and its role in the phosphotransferase reaction

    HIV-1 DNA predicts disease progression and post-treatment virological control.

    Get PDF
    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials

    Relationship of literacy and heart failure in adults with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although reading ability may impact educational strategies and management of heart failure (HF), the prevalence of limited literacy in patients with HF is unknown.</p> <p>Methods</p> <p>Subjects were drawn from the Vermont Diabetes Information System Field Survey, a cross-sectional study of adults with diabetes in primary care. Participants' self-reported characteristics were subjected to logistic regression to estimate the association of heart failure and literacy while controlling for social and economic factors. The Short Test of Functional Health Literacy was used to measure literacy.</p> <p>Results</p> <p>Of 172 subjects with HF and diabetes, 27% had limited literacy compared to 15% of 826 subjects without HF (OR 2.05; 95% CI 1.39, 3.02; <it>P </it>< 0.001). Adjusting for age, sex, race, income, marital status and health insurance, HF continued to be significantly associated with limited literacy (OR 1.55, 95% CI 1.00, 2.41, <it>P </it>= .05).</p> <p>After adjusting for education, however, HF was no longer independently associated with literacy (OR 1.31; 95% CI 0.82 – 2.08; <it>P </it>= 0.26).</p> <p>Conclusion</p> <p>Over one quarter of diabetic adults with HF have limited literacy. Although this association is no longer statistically significant when adjusted for education, clinicians should be aware that many of their patients have important limitations in dealing with written materials.</p

    Renal blood flow using arterial spin labeling (ASL) MRI: experimental protocol and principles

    Get PDF
    A noninvasive, robust, and reproducible method to measure renal perfusion is important to understand the physiology of kidney. Arterial spin labeling (ASL) MRI technique labels the endogenous blood water as freely diffusible tracers to measure perfusion quantitatively without relying on exogenous contrast agent. Therefore, it alleviates the safety concern involving gadolinium chelates. To obtain quantitative tissue perfusion information is particularly relevant for multisite and longitudinal imaging of living subjects.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
    corecore