95 research outputs found

    Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes

    Get PDF
    A combinatorial depletion strategy is combined with biochemistry, quantitative proteomics and computational approaches to elucidate the structure of the SAGA/ADA complexes. The analysis reveals five connected functional modules capable of independent assembly

    Urinary nitrate might be an early biomarker for pediatric acute kidney injury in the emergency department

    Get PDF
    NO is involved in normal kidney function and perturbed in acute kidney injury (AKI). We hypothesized that urinary concentration of NO metabolites, nitrite, and nitrate would be lower in children with early AKI presenting to the emergency department (ED), when serum creatinine (SCr) was uninformative. Patients up to 19 y were recruited if they had a urinalysis and SCr obtained for routine care. Primary outcome, AKI, was defined by pediatric Risk, Injury, Failure, Loss of function, End-stage renal disease (pRIFLE) criteria. Urinary nitrite and nitrate were determined by HPLC. A total of 252 patients were enrolled, the majority (93%) of whom were without AKI. Although 18 (7%) had AKI by pRIFLE, 50% may not have had it identified by the SCr value alone at the time of visit. Median urinary nitrate was lower for injury versus risk (p = 0.03); this difference remained significant when the injury group was compared against the combined risk and no AKI groups (p = 0.01). Urinary nitrite was not significantly different between groups. Thus, low urinary nitrate is associated with AKI in the pediatric ED even when SCr is normal. Predictive potential of this putative urinary biomarker for AKI needs further evaluation in sicker patients

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Acute kidney injury biomarkers: renal angina and the need for a renal troponin I

    Get PDF
    Acute kidney injury (AKI) in hospitalized patients is independently associated with increased morbidity and mortality in pediatric and adult populations. Continued reliance on serum creatinine and urine output to diagnose AKI has resulted in our inability to provide successful therapeutic and supportive interventions to prevent and mitigate AKI and its effects. Research efforts over the last decade have focused on the discovery and validation of novel urinary biomarkers to detect AKI prior to a change in kidney function and to aid in the differential diagnosis of AKI. The aim of this article is to review the AKI biomarker literature with a focus on the context in which they should serve to add to the clinical context facing physicians caring for patients with, or at-risk for, AKI. The optimal and appropriate utilization of AKI biomarkers will only be realized by understanding their characteristics and placing reasonable expectations on their performance in the clinical arena

    Socioeconomic questionnaire and clinical assessment in the HELENA Cross-sectional Study: methodology

    No full text
    Rationale: Environmental factors such as dietary habits, breastfeeding, socioeconomic conditions and educational factors are strong influences on nutritional and puberty status, physical activity, food choices and their interactions. Several diseases of adulthood seem to be linked to, or to originate from, lifestyle in childhood and adolescence. Objective: The aims of this study are to describe birth parameters and socioeconomic factors and to assess clinical status in adolescents aged 13-16 years from 10 European countries participating in the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) Cross-Sectional Study (CSS). Methodology: A self-report questionnaire on the socioeconomic status, a parental questionnaire concerning neonatal period and also a case report form (CRF), in which clinical items during clinical examination (such as medical history, treatments, anthropometry, Tanner staging, blood pressure, heart rate) were assessed. To develop these documents, first a list of items was established, a search of existing documents was performed and the advice of local and international experts was taken. All documents (questionnaires and an operations manual) were discussed in plenary HELENA meetings; a final version of these documents was fixed, and the process of translation and back translation was performed. Results: The questionnaires and CRF were tested for validation in all 10 participant cities; 208 adolescents were enrolled during the pilot study. All items that caused problems or questions in one or more participating centers or were completed by < 85% of the adolescents were reviewed before the beginning of the HELENA-CSS. Conclusion: These final questionnaires and CRF will contribute to better understanding of the inequalities in nutrition, behavior and health in the European adolescent population. The experience and process should be useful for other multicenter studies

    Ephrin-A5 and EphA5 Interaction Induces Synaptogenesis during Early Hippocampal Development

    Get PDF
    Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases.Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents.These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation

    Transcriptome and Proteome Exploration to Model Translation Efficiency and Protein Stability in Lactococcus lactis

    Get PDF
    This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component

    Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain

    Get PDF
    The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner
    corecore