36 research outputs found

    Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging

    Get PDF
    The biocompatibility and performance of reagents for in vivo contrast-enhanced magnetic resonance imag-ing are essential for their translation to the clinic. The quality of the surface coating of nanoparticle-based MRI contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIONs), is criti-cal to ensure high colloidal stability in biological environments, improved magnetic performance and dis-persion in circulatory fluids and tissues. Herein, we report the design of a library of 21 peptides and lig-ands and identify highly stable self-assembled monolayers on the USPIONs surface. A total of 86 differ-ent peptide coated USPIONs are prepared and selected using several stringent criteria, e.g., stability against electrolyte-induced aggregation in physiological conditions, prevention of non-specific binding to cells, absence of cellular toxicity and contrast-enhanced in vivo MRI. The bis-phosphorylated peptide 2PG-Sāˆ—VVVT-PEG4-ol provides highest biocompatibility and performance for USPIONs, with no de-tectable toxicity or adhesion to live cells. The 2PG-Sāˆ—VVVT-PEG4-ol coated USPIONs show enhanced magnetic resonance properties, r1 (2.4 mM-1.s-1) and r2 (217.8 mM-1.s-1) relaxivities, and greater r2/r1 relaxivity ratios (>90), when compared to commercially available MRI contrast agents. Furthermore, we demonstrate the utility of 2PG-Sāˆ—VVVT-PEG4-ol coated USPIONs as a T2 contrast agent for in vivo MRI applica-tions. High contrast enhancement of the liver is achieved as well as detection of liver tumors, with signifi-cant improvement of the contrast-to-noise ratio of tumor-to-liver contrast. It is envisaged that the reported peptide coated USPIONs have the potential to allow for the specific targeting of tumors, and hence early detection of cancer by MRI

    Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells

    Get PDF
    Magnetic resonance spectroscopy is increasingly used as a non-invasive method to investigate apoptosis. Apoptosis was induced in Jurkat T-cells by Fas mAb. 1H magnetic resonance spectra of live cells showed an increase in methylene signal as well as methylene/methyl ratio of fatty acid side chains at 5 and 24ā€‰h following induction of apoptosis. To explain this observation, 1H magnetic resonance spectra of cell extracts were investigated. These demonstrated a 70.0Ā±7.0%, 114.0Ā±8.0% and 90.0Ā±5.0% increase in the concentration of triacylglycerols following 3, 5 and 7ā€‰h of Fas mAb treatment (P<0.05). Confocal microscopy images of cells stained with the lipophilic dye Nile Red demonstrated the presence of lipid droplets in the cell cytoplasm. Quantification of the stained lipids by flow cytometry showed a good correlation with the magnetic resonance results (Pā©¾0.05 at 3, 5 and 7ā€‰h). 31P magnetic resonance spectra showed a drop in phosphatidylcholine content of apoptosing cells, indicating that alteration in phosphatidylcholine metabolism could be the source of triacylglycerol accumulation during apoptosis. In summary, apoptosis is associated with an early accumulation of mobile triacylglycerols mostly in the form of cytoplasmic lipid droplets. This is reflected in an increase in the methylene/methyl ratio which could be detected by magnetic resonance spectroscopy

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7ā€‰T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=āˆ’0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    Design, synthesis and in vitro characterization of fluorescent and paramagnetic CXCR4-targeted imaging agents.

    No full text
    The G-protein coupled C-X-C chemokine receptor type 4 (CXCR4) is highly overexpressed in a range of cancers and is therefore an excellent biomarker for cancer imaging. To this end targeted iron oxide nanoparticles were developed and utilised for in vitro imaging of MDA-MB-231 breast cancer cells overexpressing the CXCR4 receptor. Nanoparticles comprising an iron oxide core, encapsulated in a stabilising epichlorohydrin crossed-linked dextran polymer, were conjugated to a cyclopentapeptide with affinity to the CXCR4 receptor. The particles were characterized for their size, surface charge and r2 relaxivity at 4.7 T. MR imaging of the CXCR4 receptor with targeted iron oxide nanoparticles revealed an approximately 3-fold increase in T2 signal enhancement of MDA-MB-231 cells compared to non-targeted controls. Prussian blue staining of labeled MDA-MB-231 cells revealed darker and more intense staining of the cellular membrane. This study demonstrates the potential of targeted iron oxide nanoparticles for the imaging of the CXCR4 receptor by magnetic resonance imaging (MRI)

    Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging.

    No full text
    OBJECTIVE: Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. METHODS: DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-Ī±-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by inĀ vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow inĀ vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. RESULTS: Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this inĀ vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (rĀ = 0.69; PĀ = .014), P-selectin (rĀ = 0.65; PĀ = .022), and macrophage content (rĀ = 0.59; PĀ = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. CONCLUSIONS: These molecular MRI probes constitute a novel imaging tool for inĀ vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future.This study was funded by The Health and Medical Research Fund from The Food and Health Bureau, The Government of The Hong Kong Special Administrative Region. The Food and Health Bureau, The Government of The Hong Kong Special Administrative Region had no involvement in the study design; collection, analysis, and interpretation of data; manuscript writing; or the decision to submit the manuscript for publication
    corecore