18 research outputs found
EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer
Ernest Moles,1– 4 David W Chang,1– 3 Friederike M Mansfeld,1– 3 Alastair Duly,1,2 Kathleen Kimpton,1 Amy Logan,1– 4 Christopher B Howard,5 Kristofer J Thurecht,5,6 Maria Kavallaris1– 4 1Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia; 2UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia; 3School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia; 4UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia; 5Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia; 6Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD, 4072, AustraliaCorrespondence: Ernest Moles; Maria Kavallaris, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia, Email [email protected]; [email protected]: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site.Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model.Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart.Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC. Keywords: targeted drug delivery, bispecific antibodies, PEGylated liposomal doxorubicin, EGFR targeting, non-small cell lung cance
Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia
High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia
Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?
In the present study, a capsule system that consists of a stealth carrier based on poly(ethylene glycol) (PEG) and functionalized with bispecific antibodies (BsAbs) is introduced to examine the influence of the capsule shape and size on cellular targeting. Hollow spherical and rod-shaped PEG capsules with tunable aspect ratios (ARs) of 1, 7, and 18 were synthesized and subsequently functionalized with BsAbs that exhibit dual specificities to PEG and epidermal growth factor receptor (EGFR). Dosimetry (variation between the concentrations of capsules present and capsules that reach the cell surface) was controlled through "dynamic" incubation (i.e., continuously mixing the incubation medium). The results obtained were compared with those obtained from the "static" incubation experiments. Regardless of the incubation method and the capsule shape and size studied, BsAb-functionalized PEG capsules showed >90% specific cellular association to EGFR-positive human breast cancer cells MDA-MB-468 and negligible association with both control cell lines (EGFR negative Chinese hamster ovary cells CHO-K1 and murine macrophages RAW 264.7) after incubation for 5 h. When dosimetry was controlled and the dose concentration was normalized to the capsule surface area, the size or shape had a minimal influence on the cell association behavior of the capsules. However, different cellular internalization behaviors were observed, and the capsules with ARs 7 and 18 were, respectively, the least and most optimal shape for achieving high cell internalization under both dynamic and static conditions. Dynamic incubation showed a greater impact on the internalization of rod-shaped capsules (∼58-67% change) than on the spherical capsules (∼24-29% change). The BsAb-functionalized PEG capsules reported provide a versatile particle platform for the evaluation and comparison of cellular targeting performance of capsules with different sizes and shapes in vitro
Bispecific Antibody-Functionalized Upconversion Nanoprobe
© 2018 American Chemical Society. Upconversion nanoparticles (UCNPs) are new optical probes for biological applications. For specific biomolecular recognition to be realized for diagnosis and imaging, the key lies in developing a stable and easy-to-use bioconjugation method for antibody modification. Current methods are not yet satisfactory regarding conjugation time, stability, and binding efficiency. Here, we report a facile and high-yield approach based on a bispecific antibody (BsAb) free of chemical reaction steps. One end of the BsAb is designed to recognize methoxy polyethylene glycol-coated UCNPs, and the other end of the BsAb is designed to recognize the cancer antigen biomarker. Through simple vortexing, BsAb-UCNP nanoprobes form within 30 min and show higher (up to 54%) association to the target than that of the traditional UCNP nanoprobes in the ELISA-like assay. We further demonstrate its successful binding to the cancer cells with high efficiency and specificity for background-free fluorescence imaging under near-infrared excitation. This method suggests a general approach broadly suitable for functionalizing a range of nanoparticles to specifically target biomolecules
Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity
© 2019 American Chemical Society. The efficiency of nanoparticle-based drug delivery systems to accumulate in targeted tumor sites is low owing primarily to the various biological mechanisms that promote premature clearance, such as renal filtration or the mononuclear phagocyte system (MPS). Such obstacles to enhanced tumor accumulation of nanomedicines remain formidable challenges to drug carrier design. It is thought that nanoparticles decorated with bioactive groups such as glycopolymers, compared to individual monovalent carbohydrate ligands, can assist in the enhanced delivery of payloads to tumors due to their multivalent effect. While glycopolymers are widely applied, limited attention has been dedicated to understanding how the presentation of glycopolymers on the surface of micelle may affect the biological activity. We utilized biodegradable and biocompatible polylactide-fructose block copolymers to investigate the effect of chain length of the hydrophilic fructose block on the biological activity. Three different fructose chain length polymers were prepared and self-assembled into spherical micelles. We discovered that their bioactivity is sugar-length-dependent, where a minimum sugar length is required to enhance cellular uptake and bind to receptors on the cell surface. According to SAXS (small angle X-ray scattering) data, micelles were formed in three layers with a polylactide core, followed by a mixed layer which may contains both PLA and fructose and finally an outer layer of fructose. The level of hydration was observed to be dependent on the length of the polymer with longer polymers leading to more hydrated glycopolymer layers. As a result, the high water content promoted enhanced flexibility of the fructose segments coinciding with effective receptor binding. This led to enhanced cell uptake by MDA-MB-231 and MCF-7 cells, which overexpress GLUT5 receptors, which ultimately resulted in higher accumulation in multicellular spheroid (3D) models. Moreover, the longer fructose chain length micelles exhibited reduced clearance by MPS in an in vivo study
Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles
The clinical success of monoclonal antibody therapy has inspired research in understanding the fundamental molecular basis of antibody-antigen interactions and the engineering of antibodies and antibody assemblies with enhanced or novel properties. In particular, colloidally stable antibody assemblies can enhance dosing strategies and enable combined therapy of a mixture of antibodies or biologics. Herein, nanoassemblies of therapeutic antibodies were fabricated with controlled physicochemical properties using a versatile template-mediated assembly method. The antibody nanoparticles (AbNPs) cross-linked with poly(ethylene glycol)-N-hydroxysuccinimide were monodispersed, with particle diameters consistent with the template size (250 nm). When assembled using Herceptin or Kadcyla as a model antibody and antibody-drug conjugate, respectively, the nanoparticles retained the selectivity of the monoclonal antibody and recognized >98% of cells expressing the target receptors on cell membranes. Unlike the free Herceptin antibody, which was predominantly localized at the surface, the AbNPs were internalized via receptor-mediated endocytosis, presenting opportunities for delivering monoclonal antibodies intracellularly at high concentrations and/or against intracellular targets. With the vast array of antibodies that could be applied and different cross-linking chemistries possible, the reported antibody assembly strategy provides a versatile platform for the development of antibody assemblies for therapeutic, diagnostic, and clinical applications
Ring-Opening Copolymerization of L-Lactide and Epsilon-Caprolactone in Supercritical Carbon Dioxide Using Triblock Oligomers of Caprolactone and Peg As Stabilizers
In this study, the use of triblock (A-B-A) oligomers of epsilon-caprolactone (epsilon-CL) (A) and PEG400 (B) as stabilizers (SB) for the copolymerization of L-lactide (LLA) and epsilon-CL in supercritical carbon dioxide (scCO(2)) was investigated. To determine the effect of CO2-philic and polymer-philic segments on copolymerization, oligomers with three different average molecular weights (M-w=2000-6000 Da) were synthesized by changing the PEG400/epsilon-CL ratio. Copolymerizations were confirmed by H-1-nuclear magnetic resonance (NMR), C-13-NMR and differential scanning calorimeter data. It was possible to copolymerize LLA and e-CL in scCO(2) without any SB; however, the polymerization yields and average molecular weights were low, and significant aggregate formations were detected. Recipes featuring only 5% SB were successfully applied to reach high polymerization yields of similar to 85% and polymers with average molecular weights greater than 20 kDa. When the polymer-philic segment of the SB increased, both the yield and molecular weight of the copolymer also increased significantly, resulting in white powdery products. Polymer Journal (2011) 43, 785-791; doi: 10.1038/pj.2011.70; published online 27 July 2011Wo