22 research outputs found

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (H<sub>II</sub>) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions.</p> <p>Results</p> <p>Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to H<sub>II </sub>transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group.</p> <p>Conclusions</p> <p>This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.</p

    Conserved determinants of lentiviral genome dimerization

    Get PDF
    Abstract Background Retroviruses selectively package two copies of their unspliced genomes by what appears to be a dimerization-dependent RNA packaging mechanism. Dimerization of human immunodeficiency virus Type-1 (HIV-1) genomes is initiated by “kissing” interactions between GC-rich palindromic loop residues of a conserved hairpin (DIS), and is indirectly promoted by long-range base pairing between residues overlapping the gag start codon (AUG) and an upstream Unique 5′ element (U5). The DIS and U5:AUG structures are phylogenetically conserved among divergent retroviruses, suggesting conserved functions. However, some studies suggest that the DIS of HIV-2 does not participate in dimerization, and that U5:AUG pairing inhibits, rather than promotes, genome dimerization. We prepared RNAs corresponding to native and mutant forms of the 5′ leaders of HIV-1 (NL4-3 strain), HIV-2 (ROD strain), and two divergent strains of simian immunodeficiency virus (SIV; cpz-TAN1 and -US strains), and probed for potential roles of the DIS and U5:AUG base pairing on intrinsic and NC-dependent dimerization by mutagenesis, gel electrophoresis, and NMR spectroscopy. Results Dimeric forms of the native HIV-2 and SIV leaders were only detectable using running buffers that contained Mg2+, indicating that these dimers are more labile than that of the HIV-1 leader. Mutations designed to promote U5:AUG base pairing promoted dimerization of the HIV-2 and SIV RNAs, whereas mutations that prevented U5:AUG pairing inhibited dimerization. Chimeric HIV-2 and SIV leader RNAs containing the dimer-promoting loop of HIV-1 (DIS) exhibited HIV-1 leader-like dimerization properties, whereas an HIV-1NL4-3 mutant containing the SIVcpzTAN1 DIS loop behaved like the SIVcpzTAN1 leader. The cognate NC proteins exhibited varying abilities to promote dimerization of the retroviral leader RNAs, but none were able to convert labile dimers to non-labile dimers. Conclusions The finding that U5:AUG formation promotes dimerization of the full-length HIV-1, HIV-2, SIVcpzUS, and SIVcpzTAN1 5′ leaders suggests that these retroviruses utilize a common RNA structural switch mechanism to modulate function. Differences in native and NC-dependent dimerization propensity and lability are due to variations in the compositions of the DIS loop residues rather than other sequences within the leader RNAs. Although NC is a well-known RNA chaperone, its role in dimerization has the hallmarks of a classical riboswitch.http://deepblue.lib.umich.edu/bitstream/2027.42/113284/1/12977_2015_Article_209.pd
    corecore