59 research outputs found

    Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report

    Get PDF
    BACKGROUND: Bortezomib (Velcade(®)), a dipeptide boronate proteasome inhibitor, is a novel anti-cancer agent registered for multiple myeloma (MM). It has also shown promising clinical activity in non-small cell lung cancer (NSCLC). Clinical experience with bortezomib so far indicates that overall incidence of cardiac failure associated with bortezomib therapy remains incidental. Nevertheless, acute development or exacerbation of congestive cardiac failure has been associated with bortezomib treatment. CASE PRESENTATION: We present here a case of severe, but reversible, congestive cardiac failure in a lung cancer patient who had no prior cardiac history, after receiving an experimental treatment of bortezomib combined with chemotherapy. Elevated levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), as retrospectively measured in archived serum samples, were suggestive of pre-existent (sub-clinical) left ventricular dysfunction. CONCLUSION: Based on literature, we hypothesize that baseline presence of sub clinical cardiomyopathy, characterized by a dysregulation of the ubiquitin-proteasome system, could have predisposed this patient for a cardiac side effect induced by systemic proteasome inhibition. Patients with heart disease or risk factors for it should be closely monitored when being submitted to treatment with proteasome inhibition therapy such as bortezomib. Caution is therefore warranted in lung cancer patients who often present with cardiac comorbidities

    A tryptophan-rich peptide acts as a transcription activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic transcription activators normally consist of a sequence-specific DNA-binding domain (DBD) and a transcription activation domain (AD). While many sequence patterns and motifs have been defined for DBDs, ADs do not share easily recognizable motifs or structures.</p> <p>Results</p> <p>We report herein that the N-terminal domain of yeast valyl-tRNA synthetase can function as an AD when fused to a DNA-binding protein, LexA, and turn on reporter genes with distinct LexA-responsive promoters. The transcriptional activity was mainly attributed to a five-residue peptide, WYDWW, near the C-terminus of the N domain. Remarkably, the pentapeptide <it>per se </it>retained much of the transcriptional activity. Mutations which substituted tryptophan residues for both of the non-tryptophan residues in the pentapeptide (resulting in W<sub>5</sub>) significantly enhanced its activity (~1.8-fold), while mutations which substituted aromatic residues with alanine residues severely impaired its activity. Accordingly, a much more active peptide, pentatryptophan (W<sub>7</sub>), was produced, which elicited ~3-fold higher activity than that of the native pentapeptide and the N domain. Further study indicated that W<sub>7 </sub>mediates transcription activation through interacting with the general transcription factor, TFIIB.</p> <p>Conclusions</p> <p>Since W<sub>7 </sub>shares no sequence homology or features with any known transcription activators, it may represent a novel class of AD.</p

    Patient Safety in Internal Medicine

    Get PDF
    AbstractHospital Internal Medicine (IM) is the branch of medicine that deals with the diagnosis and non-surgical treatment of diseases, providing the comprehensive care in the office and in the hospital, managing both common and complex illnesses of adolescents, adults, and the elderly. IM is a key ward for Health National Services. In Italy, for example, about 17.3% of acute patients are discharged from the IM departments. After the epidemiological transition to chronic/degenerative diseases, patients admitted to hospital are often poly-pathological and so requiring a global approach as in IM. As such transition was not associated—with rare exceptions—to hospital re-organization of beds and workforce, IM wards are often overcrowded, burdened by off-wards patients and subjected to high turnover and discharge pressure. All these factors contribute to amplify some traditional clinical risks for patients and health operators. The aim of our review is to describe several potential errors and their prevention strategies, which should be implemented by physicians, nurses, and other healthcare professionals working in IM wards

    ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase.

    Get PDF
    Editing domains of aminoacyl tRNA synthetases correct tRNA charging errors to maintain translational fidelity. A mutation in the editing domain of alanyl tRNA synthetase (AlaRS) in Aars sti mutant mice results in an increase in the production of serine-mischarged tRNAAla and the degeneration of cerebellar Purkinje cells. Here, using positional cloning, we identified Ankrd16, a gene that acts epistatically with the Aars sti mutation to attenuate neurodegeneration. ANKRD16, a vertebrate-specific protein that contains ankyrin repeats, binds directly to the catalytic domain of AlaRS. Serine that is misactivated by AlaRS is captured by the lysine side chains of ANKRD16, which prevents the charging of serine adenylates to tRNAAla and precludes serine misincorporation in nascent peptides. The deletion of Ankrd16 in the brains of Aarssti/sti mice causes widespread protein aggregation and neuron loss. These results identify an amino-acid-accepting co-regulator of tRNA synthetase editing as a new layer of the machinery that is essential to the prevention of severe pathologies that arise from defects in editing. Nature 2018 May 24; 557:510-515
    corecore