31 research outputs found

    Haptic subitizing across the fingers

    Get PDF
    Numerosity judgments of small sets of items (≤ 3) are generally fast and errorfree, while response times and error rates increase rapidly for larger numbers of items. We investigated an efficient process used for judging small numbers of items (known as subitizing) in active touch. We hypothesized that this efficient process for numerosity judgment might be related to stimulus properties that allow for efficient (parallel) search. Our results showed that subitizing was not possible forraised lines among flat surfaces, whereas this type of stimulus could be detected in parallel over the fingers. However, subitizing was possible when the number of fingers touching a surface had to be judged while the other fingers were lowered in mid-air. In the latter case, the lack of tactile input is essential, since subitizing was not enabled by differences in proprioceptive information from the fingers. Our results show that subitizing using haptic information from the fingers is possible only whensome fingers receive tactile information while other fingers do not

    The effect of feature saliency on haptic subitizing

    Get PDF
    ‘Subitizing’ refers to fast and error-free numerosity judgment for small (<4) sets of items. For larger sets, the slower process of ‘counting’ is used. Counting has a serial character, whereas subitizing is believed to have a parallel character. While subitizing was initially found in vision, it has been shown to exist in touch as well. In vision, it has been demonstrated that adding distractor items to a set of target items influences numerosity judgment of the target items. Subitizing was in this case only possible if the distractor item is highly salient among the targets. In the present study, we investigated the effect of adding a distractor item on haptic judgement of a set of target items. To this end, we asked subjects to judge the number of spheres grasped in their hand. Either a cube or an ellipsoid could be added to the set. A cube among spheres has been shown to be highly salient, while an ellipsoid among spheres is not. Our results show that adding a distractor item led to an increase in the response time slopes regardless of the distractor shape. Subitizing was, however, only possible in the case of a salient distractor. This is in agreement with results from vision

    Grabbing subitizing with both hands: bimanual number processing

    Get PDF
    Visual judgment of small numerosities (<4) is generally assumed to be done through subitizing, which is a faster process than counting. Subitizing has also been shown to occur in haptic judgment of the number of spheres in the hand. Furthermore, interactions have been shown to exist between visually perceived numbers and hand motor action. In this study, we compare enumeration of a set of spheres presented to one hand (unimanual) and enumeration of the same total number of spheres presented divided over the two hands (bimanual). Our results show that, like in vision, a combination of subitizing and counting is used to process numbers in active touch. This shows that numbers are processed in a modality-independent way. This suggests that there are not only interactions between perception of numbers and hand motor action, but rather that number representation is modality-independent

    Range dependent processing of visual numerosity: similarities across vision and haptics

    Get PDF
    ‘Subitizing’ refers to fast and accurate judgement of small numerosities, whereas for larger numerosities either counting or estimation are used. Counting is slow and precise, whereas estimation is fast but imprecise. In this study consisting of five experiments we investigated if and how the numerosity judgement process is affected by the relative spacing between the presented numerosities. To this end we let subjects judge the number of dots presented on a screen and recorded their response times. Our results show that subjects switch from counting to estimation if the relative differences between subsequent numerosities are large (a factor of 2), but that numerosity judgement in the subitizing range was still faster. We also show this fast performance for small numerosities only occurred when numerosity information is present. This indicates this is typical for number processing and not magnitude estimation in general. Furthermore, comparison with a previous haptic study suggests similar processing in numerosity judgement through haptics and vision

    An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells

    Get PDF
    Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.P30 DK097512/DK/NIDDK NIH HHS/United States UC4 DK104166/DK/NIDDK NIH HHS/United States MR/P010695/1/MRC_/Medical Research Council/United Kingdompublished version, accepted version, submitted versio

    Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions

    Get PDF
    Background Bile duct injury (BDI) is a dreaded complication of cholecystectomy, often caused by misinterpretation of biliary anatomy. To prevent BDI, techniques have been developed for intraoperative assessment of bile duct anatomy. This article reviews the evidence for the different techniques and discusses their strengths and weaknesses in terms of efficacy, ease, and cost-effectiveness. Method PubMed was searched from January 1980 through December 2009 for articles concerning bile duct visualization techniques for prevention of BDI during laparoscopic cholecystectomy. Results Nine techniques were identified. The critical-view-of-safety approach, indirectly establishing biliary anatomy, is accepted by most guidelines and commentaries as the surgical technique of choice to minimize BDI risk. Intraoperative cholangiography is associated with lower BDI risk (OR 0.67, CI 0.61-0.75). However, it incurs extra costs, prolongs the operative procedure, and may be experienced as cumbersome. An established reliable alternative is laparoscopic ultrasound, but its longer learning curve limits widespread implementation. Easier to perform are cholecystocholangiography and dye cholangiography, but these yield poor-quality images. Light cholangiography, requiring retrograde insertion of an optical fiber into the common bile duct, is too unwieldy for routine use. Experimental techniques are passive infrared cholangiography, hyperspectral cholangiography, and near-infrared fluorescence cholangiography. The latter two are performed noninvasively and provide real-time images. Quantitative data in patients are necessary to further evaluate these techniques. Conclusions The critical-view-of-safety approach should be used during laparoscopic cholecystectomy. Intraoperative cholangiography or laparoscopic ultrasound is recommended to be performed routinely. Hyperspectral cholangiography and near-infrared fluorescence cholangiography are promising novel techniques to prevent BDI and thus increase patient safety
    corecore