53 research outputs found

    Microsomal epoxide hydrolase gene polymorphism and susceptibility to colon cancer

    Get PDF
    We examined polymorphisms in exons 3 and 4 of microsomal epoxide hydrolase in 101 patients with colon cancer and compared the results with 203 control samples. The frequency of the exon 3 T to C mutation was higher in cancer patients than in controls (odds ratio 3.8; 95% confidence intervals 1.8–8.0). This sequence alteration changes tyrosine residue 113 to histidine and is associated with lower enzyme activity when expressed in vitro. This suggests that putative slow epoxide hydrolase activity may be a risk factor for colon cancer. This appears to be true for both right- and left-sided tumours, but was more apparent for tumours arising distally (odds ratio 4.1; 95% confidence limits 1.9–9.2). By contrast, there was no difference in prevalence of exon 4 A to G transition mutation in cancer vs controls. This mutation changes histidine residue 139 to arginine and produces increased enzyme activity. There was no association between epoxide hydrolase genotype and abnormalities of p53 or Ki- Ras. © 1999 Cancer Research Campaig

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus

    Get PDF
    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N2. This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo–Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation

    Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest

    Get PDF
    High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 2–4 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of <it>Pseudomonas aeruginosa </it>contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, <it>ppkA</it>, has been implicated in <it>P. aeruginosa </it>virulence. Together with the adjacent <it>pppA </it>phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a <it>pppA-ppkA </it>double mutant and characterised its phenotype and transcriptomic profiles.</p> <p>Results</p> <p>Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that <it>pppA-ppkA </it>deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the <it>pppA-ppkA </it>mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the <it>pppA </it>and <it>ppkA </it>genes were expressed ectopically.</p> <p>Conclusions</p> <p>Our results suggest that in addition to its crucial role in controlling the activity of <it>P. aeruginosa </it>H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.</p

    Extracellular matrix formation enhances the ability of streptococcus pneumoniae to cause invasive disease

    Get PDF
    Extent: 17p.During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100- fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.Claudia Trappetti, Abiodun D. Ogunniyi, Marco R. Oggioni and James C. Pato
    corecore