48 research outputs found

    Updating Computational Aeroelastic Models using Flight Flutter Test Data

    Get PDF

    Why Depressed Mood is Adaptive: A Numerical Proof of Principle for an Evolutionary Systems Theory of Depression.

    Get PDF
    We provide a proof of principle for an evolutionary systems theory (EST) of depression. This theory suggests that normative depressive symptoms counter socioenvironmental volatility by increasing interpersonal support via social signalling and that this response depends upon the encoding of uncertainty about social contingencies, which can be targeted by neuromodulatory antidepressants. We simulated agents that committed to a series of decisions in a social two-arm bandit task before and after social adversity, which precipitated depressive symptoms. Responses to social adversity were modelled under various combinations of social support and pharmacotherapy. The normative depressive phenotype responded positively to social support and simulated treatments with antidepressants. Attracting social support and administering antidepressants also alleviated anhedonia and social withdrawal, speaking to improvements in interpersonal relationships. These results support the EST of depression by demonstrating that following adversity, normative depressed mood preserved social inclusion with appropriate interpersonal support or pharmacotherapy

    The hierarchically mechanistic mind: A free-energy formulation of the human psyche

    Get PDF
    This article presents a unifying theory of the embodied, situated human brain called the Hierarchically Mechanistic Mind (HMM). The HMM describes the brain as a complex adaptive system that actively minimises the decay of our sensory and physical states by producing self-fulfilling action-perception cycles via dynamical interactions between hierarchically organised neurocognitive mechanisms. This theory synthesises the free-energy principle (FEP) in neuroscience with an evolutionary systems theory of psychology that explains our brains, minds, and behaviour by appealing to Tinbergen's four questions: adaptation, phylogeny, ontogeny, and mechanism. After leveraging the FEP to formally define the HMM across different spatiotemporal scales, we conclude by exploring its implications for theorising and research in the sciences of the mind and behaviour

    Gust Analysis using Computational Fluid Dynamics Derived Reduced Order Models

    Get PDF
    Time domain gust response analysis based on large order nonlinear aeroelastic models is computationally expensive. An approach to the reduction of nonlinear models for gust response prediction is presented in this paper. The method uses information on the eigenspectrum of the coupled system Jacobian matrix and projects the full order model, through a series expansion, onto a small basis of eigenvectors which is capable of representing the full order model dynamics. The novelty in the paper concerns the representation of the gust term in the reduced model in a manner consistent with standard synthetic gust definitions, allowing a systematic investigation of the influence of a large number of gust shapes without regenerating the reduced model. Results are presented for the Goland wing/store configuration

    The hierarchically mechanistic mind: an evolutionary systems theory of the human brain, cognition, and behavior

    Get PDF
    The purpose of this review was to integrate leading paradigms in psychology and neuroscience with a theory of the embodied, situated human brain, called the Hierarchically Mechanistic Mind (HMM). The HMM describes the brain as a complex adaptive system that functions to minimize the entropy of our sensory and physical states via action-perception cycles generated by hierarchical neural dynamics. First, we review the extant literature on the hierarchical structure of the brain. Next, we derive the HMM from a broader evolutionary systems theory that explains neural structure and function in terms of dynamic interactions across four nested levels of biological causation (i.e., adaptation, phylogeny, ontogeny, and mechanism). We then describe how the HMM aligns with a global brain theory in neuroscience called the free-energy principle, leveraging this theory to mathematically formulate neural dynamics across hierarchical spatiotemporal scales. We conclude by exploring the implications of the HMM for psychological inquiry

    The Depressed Brain: An Evolutionary Systems Theory

    Get PDF
    Major depression is a debilitating condition characterised by diverse neurocognitive and behavioural deficits. Nevertheless, our species-typical capacity for depressed mood implies that it serves an adaptive function. Here we apply an interdisciplinary theory of brain function to explain depressed mood and its clinical manifestations. Combining insights from the free-energy principle (FEP) with evolutionary theorising in psychology, we argue that depression reflects an adaptive response to perceived threats of aversive social outcomes (e.g., exclusion) that minimises the likelihood of surprising interpersonal exchanges (i.e., those with unpredictable outcomes). We suggest that psychopathology typically arises from ineffectual attempts to alleviate interpersonal difficulties and/or hyper-reactive neurobiological responses to social stress (i.e., uncertainty), which often stems from early experience that social uncertainty is difficult to resolve

    Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels

    Full text link
    Schizophrenia patients exhibit deficits in sensory gating as indexed by reduced prepulse inhibition (PPI) and P50 suppression, which have been linked to psychotic symptom formation and cognitive deficits. Although recent evidence suggests that atypical antipsychotics might be superior over typical antipsychotics in reversing PPI and P50 suppression deficits not only in schizophrenia patients, but also in healthy volunteers exhibiting low levels of PPI, the impact of typical antipsychotics on these gating measures is less clear. To explore the impact of the dopamine D2-like receptor system on gating and cognition, the acute effects of haloperidol on PPI, P50 suppression, and cognition were assessed in 26 healthy male volunteers split into subgroups having low vs high PPI or P50 suppression levels using a placebo-controlled within-subject design. Haloperidol failed to increase PPI in subjects exhibiting low levels of PPI, but attenuated PPI in those subjects with high sensorimotor gating levels. Furthermore, haloperidol increased P50 suppression in subjects exhibiting low P50 gating and disrupted P50 suppression in individuals expressing high P50 gating levels. Independently of drug condition, high PPI levels were associated with superior strategy formation and execution times in a subset of cognitive tests. Moreover, haloperidol impaired spatial working memory performance and planning ability. These findings suggest that dopamine D2-like receptors are critically involved in the modulation of P50 suppression in healthy volunteers, and to a lesser extent also in PPI among subjects expressing high sensorimotor gating levels. Furthermore, the results suggest a relation between sensorimotor gating and working memory performance

    The separation distress hypothesis: The ultimate theory of depression?

    No full text
    In his latest treatise on the separation distress hypothesis, Watt makes a compelling case that depression ultimately stems from an adaptive response to problems in the social world. Despite our agreement with many of Watt's claims, we argue here that the separation distress hypothesis only tells us part of the story. Finding little reason to favour his model over other socially-oriented theories of depression, we advocate instead for an integrative approach in theoretical psychiatry that can fruitfully incorporate insights arising from each of these evolutionary views, including Watt's own
    corecore