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Abstract A nonlinear model reduction based on
eigenmode decomposition and projection for the pre-
diction of sub- and supercritical limit-cycle oscilla-
tion is presented herein. The paper focuses on the
derivation of the reduced-order model formulation to
include expansion terms up to fifth order such that
higher-order nonlinear behaviour of a physical sys-
tem can be captured. The method is applied to a
two degree-of-freedom pitch–plunge aerofoil struc-
tural model in unsteady incompressible flow. Struc-
tural stiffness nonlinearity is introduced as a fifth-order
polynomial, while the aerodynamics follow linear the-
ory. It is demonstrated that the reduced-order model is
capable of accurately capturing sub- and supercritical
limit-cycle oscillations arising both from initial distur-
bances and gust excitation. Furthermore, an analysis
of the computational cost associated with constructing
such reduced-order model and its applicability to more
complex aeroelastic problems is given.
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1 Introduction

Limit-cycle oscillation (LCO) is an inherently non-
linear phenomenon and a critical aspect of stability
analysis in aircraft aeroelasticity. Limit-cycle oscilla-
tions can arise from concentrated structural nonlinear-
ities which are inherent in aeroelastic systems such
as freeplay at interconnection between different com-
ponents including the hinge of a trailing-edge control
surface or the connection between wing, pylons and
engines [18]. Another type of concentrated structural
nonlinearity is cubic stiffness which can typically rep-
resent a wing section undergoing torsional deforma-
tion. In fact, from an experimental perspective, concen-
trated structural nonlinearity in the form of polynomial
stiffness (not limited to cubic) has been identified in
experimentalmodels through data curve fitting [24,26].
Sources of LCO have also been attributed to distributed
structural nonlinearity, namely the geometric nonlinear
stiffening of plate-like structures such as low-aspect-
ratio wings [9]. Limit-cycle oscillation is also induced
by aerodynamic nonlinearities arising from flow phe-
nomena such as the separation at high incidence angles
and unsteady shock oscillations in transonic flow [18].

In terms of LCO associated with concentrated struc-
tural nonlinearity, if the nonlinearity is purely hard-
ening, supercritical LCO can occur which is charac-
terised by a smooth growth in oscillation amplitude
with respect to increasing flight speed above the flutter
point. The system is stable below the flutter point. If
the nonlinearity is softening however, the system can
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become unstable even below the flutter point. This is
shown in [30] as one of the earliest studies of LCO
arising from concentrated structural nonlinearity. The
nonlinearities examined were namely cubic stiffness,
freeplay and hysteresis. In the case of the cubic harden-
ing spring, LCO was observed at flow velocities above
the linear flutter speed, while softening springs in gen-
eral had a destabilising effect on flutter. If, in addition,
higher-order hardening nonlinearities exist, then sub-
critical LCO can arise which is characterised by sta-
ble large amplitude oscillations below the flutter point
growing with increasing flight speed above the flutter
point [9]. Subcritical LCO is highly undesirable due to
the sudden large amplitude nature and the potential to
manifest at velocities below the flutter point.

Limit-cycle oscillations have been studied exten-
sively in the time domain. The amplitudes of LCO aris-
ing from cubic hardening stiffness nonlinearity in rela-
tion to the flow velocity have been studied explicitly
using both numerical integration and asymptotic the-
ory [17]. Monte Carlo simulations have been applied
in the study of aerofoil LCO resulting from a sub-
critical bifurcation subject to parametric uncertainty
in the cubic softening and quintic hardening stiffness
coefficients of the nonlinear torsional spring and ini-
tial pitch deflection [22]. The stability of LCO with
respect to control surface freeplay nonlinearity has
also been studied both numerically and experimen-
tally [6,25,28]. In the presence of freeplay, the LCO
amplitude is strongly dependent on initial conditions.

The harmonic balance method, which evaluates
steady-state oscillations directly, has been used in stud-
ies of LCO to avoid the time-consuming computation
of transient behaviour, in particular close to the linear
flutter point. A general conclusion is that the accuracy
of LCO predictions increases with the number of har-
monics retained. Harmonic balance method has been
applied for predictions in the context of control sur-
face freeplay [20], where excellent agreement to direct
time integration has been demonstrated, and also in the
context of LCO arising from both cubic hardening and
softening stiffness nonlinearity [12]. In the latter study,
when discussing cubic softening stiffness no additional
higher-order hardening nonlinearity was considered,
and consequently, LCO was not observed at velocities
below or above the linear flutter point.

Prediction of nonlinear aeroelastic phenomena such
as LCO, which can provide insight into physical mech-
anisms, requires reliable analysis tools. Time-domain

simulation is a direct and general methodology for this
task. However, computational cost is then often pro-
hibitive. This is emphasised in, for example, sensi-
tivity studies where large numbers of simulations are
required. In an industrial scenario, there will be many
parameters under consideration such as multiple pay-
load/mass cases, various gust lengths and shapes, and
control laws. A complete evaluation of all parame-
ters can easily result in millions of cases to be sim-
ulated. Furthermore, computational cost increases sig-
nificantly when nonlinear aerodynamics are involved
where computational fluid dynamics (CFD) is neces-
sary to capture the relevant flow physics. While being
able to provide good predictions of steady-state LCO
amplitudes at reduced cost in comparison with time-
domain simulation, the harmonic balance method can-
not provide information on the relationship between
LCO and the initial conditions which give rise to them.
This is particularly relevant to subcritical LCO, as sta-
ble large amplitude oscillations can occur below the
bifurcation point and these are dependent on initial con-
ditions.

Consequently, reduced-order modelling should be
exploited. One approach to construct reduced-order
models (ROM) is by using data obtained from time- or
frequency-domain solutions of the full-order system.
Proper orthogonal decomposition [21] uses samples of
the full-order dynamical response to form a set of basis
functions that can represent the system unknowns. Typ-
ically, the snapshots are taken during a dynamic history
of interest where critical information relating to the
dominant system dynamics can be obtained. The bene-
fit of this method is that the models can be specifically
tuned to capture relevant physical behaviour. However,
the need to generate samples incurs the computational
cost of running full-order simulations.

An alternative method is to construct reduced mod-
els based on eigenmode decomposition. The general
idea of this method involves using a small number
of eigenmodes of the system’s Jacobian matrix as a
basis to project a Taylor series expansion of the non-
linear full-order residual function. The determination
of eigenmodes for aerodynamic models based on lin-
ear theory can be achieved using standard eigensolu-
tion extraction techniques. For nonlinear aerodynamic
models such as theEuler orNavier–Stokes equations on
the other hand, the dimensionof the system is large, eas-
ily exceeding millions of unknowns for realistic prob-
lems. Thus, it has been argued that direct extraction

123



Nonlinear reduced-order modelling for limit-cycle oscillation analysis 993

of an eigensolution from such system is prohibitive,
making proper orthogonal decomposition the prefer-
able method [10]. However, solving the eigenvalue
problem for large CFD systems has been demonstrated
successfully for test cases ranging from simple pitch–
plunge aerofoils to three-dimensional industrial prob-
lems of realistic aircraft [2,27]. The approach is based
on the Schur complement rearrangement of the com-
plete Jacobian matrix of the fluid and structural equa-
tions and the use of preconditioned sparse iterative lin-
ear solvers [1].

An application of eigenmode decomposition based
on the centre manifold theory was investigated to com-
pute LCO response on a rectangular wing in transonic
flow [29] and wing rock motion on a delta wing [3]. In
this approach, a single critical eigenmode of the Jaco-
bian matrix is used as the basis for the projection. The
physical space is thus spanned by the critical eigen-
mode only, while the influence of the non-critical space
is accounted for by the centre manifold theorem. The
application of eigenmode decomposition using multi-
ple eigenmodes as basis for the projection of the full-
order system is later discussed [7]. A unified approach
for CFD-based flutter and gust response analysis of
realistic aircraft configurations is then presented in [27]
using this multiple-mode model reduction framework.
This demonstrated the applicability of themethodwhen
applied to a CFD context. In general, the approach
using the centre manifold theory takes a single crit-
ical mode focusing on the prediction of steady-state
LCO phenomena as these are often dominated by the
critical mode. In situations when transient behaviour is
of interest, such as transition into LCO due to an ini-
tial or gust disturbance, the multiple-mode framework
has greater applicability. Here, the non-critical modes
become important and are included in the basis.

In the aboveworks [3,7,29], the Taylor expansion of
the nonlinear residual includes terms up to third order.
Consequently, the resulting nonlinear ROM is capable
of capturing up to third-order behaviour of the non-
linear system, while any higher-order dynamics will
be lost due to this truncation of the Taylor series. If
the nonlinear residual contains higher-order terms with
respect to the system states, then higher-order terms in
the Taylor expansion are necessary. In other words, a
higher-order ROM is required to capture higher-order
nonlinear dynamics. This is the key point that must be
addressed for a ROM to predict subcritical LCO behav-
iour.

Subcritical LCO prediction by model reduction
remains largely unexplored. Two studies have been
identified in the literature. Prediction of a subcritical
LCOhas been investigated using a reduced-order cyclic
method for a pitch–plunge aerofoil in incompressible
flow [4,13]. The method combines the techniques of
proper orthogonal decomposition and computation of
LCO in the modal subspace using an orbital approach
and allows for the direct computation of LCO. The
aerofoil model here exhibits a subcritical Hopf bifurca-
tion through its nonlinear cubic softening and quintic
hardening pitch spring. Prediction of subcritical LCO
has also been achieved using proper orthogonal decom-
position for the AGARD 445.6 wing [5]. The aerody-
namics is modelled using inviscid CFD.

This paper builds on previous work by the authors
and presents an assessment of the nonlinear model
reduction for the prediction of LCO arising from con-
centrated structural nonlinearity in the form of polyno-
mial stiffness. First, the existing framework is extended
to include up to fifth-order terms in the Taylor expan-
sion allowing, in principle, for the prediction of higher-
order nonlinear dynamics. The aim is to determine
whether subcritical LCO prediction can be achieved
using the resulting ROM. Then, assessments are made
comparing the framework based on a single critical
mode and multiple modes in their range of applica-
bility and computational cost. A nonlinear two degree-
of-freedompitch–plunge aerofoil structuralmodel cou-
pled with linear aerodynamic theory is formulated here
as the test case for the discussion.

2 Nonlinear model reduction

2.1 Nonlinear full-order model

The fully coupled nonlinear model describing the
dynamics of an aeroelastic system can be represented
in semi-discrete state-space form. Denote by W the n-
dimensional state-space vector partitioned into struc-
tural states Ws and aerodynamic states W f . Written as
a set of first-order ordinary differential equations, the
state-space equations are

Ẇ = R (W ,Θ) (1)

where R is the nonlinear residual vector corresponding
to the unknownsW , whileΘ is a vector of independent

123



994 G. Gai, S. Timme

system parameters. The system has a reference equilib-
rium point W0 for given constants Θ0. At this equilib-
riumpoint, the residual vanisheswith R (W0,Θ0) = 0.

Define w = W − W0 as the increment in the state-
space vector with respect to an equilibrium solution.
Define also θ = Θ − Θ0 as the increment in the sys-
tem’s independent parameters with respect to the equi-
librium values. The nonlinear residual in Eq. (1) can
then be expanded in a multivariate Taylor series about
the reference equilibrium point with respect to the sys-
tem states W and parameters Θ as

R (W ,Θ) = Aw + F (w)

+
(
RΘ (W0,Θ0) + AΘw + FΘ (w)

)
θ

(2)

where A = ∂R/∂W is the system Jacobian matrix and
F represents all higher-order derivatives in W . Sub-
scriptΘ denotes differentiationwith respect to it.While
only first-order derivatives in Θ are retained here for
clarity, higher-order derivatives are included as well in
the subsequent discussion. Note that while the residual
at the equilibrium is zero, its derivative with respect to
the parameters is not in general.

The function F is explicitly written as

F (w) ≈ 1
2!B (w,w) + 1

3!C (w,w,w)

+ 1
4!D (w,w,w,w) + 1

5!E (w,w,w,w,w)

(3)

whereB toE aremultilinear vector functions of higher-
order derivatives. Here functions up to fifth order with
respect to the arguments w are retained. More specifi-
cally, evaluated about the equilibrium point (indicated
by subscript 0), these are

B (x, y) =
n∑

j,k=1

∂2R
∂Wj∂Wk

∣∣∣∣
0
x j yk

C (x, y, z) =
n∑

j,k,l=1

∂3R
∂Wj∂Wk∂Wl

∣∣∣∣
0
x j yk zl

D (x, y, z, a)=
n∑

j,k,l,o=1

∂4R
∂Wj∂Wk∂Wl∂Wo

∣∣∣∣
0
x j yk zlao

E (x, y, z, a, b)

=
n∑

j,k,l,o,p=1

∂5R
∂Wj∂Wk∂Wl∂Wo∂Wp

∣∣∣∣∣
0

x j yk zlaobp

(4)

Note that B to E are symmetric multilinear functions
with respect to their arguments. Themultivariate Taylor

expansion of Eq. (2) is the starting point for the model
reduction formulation described hereafter.

2.2 Multiple-mode nonlinear model reduction

In the model reduction approach using multiple eigen-
modes, the full-order system is projected onto a small
basis of m eigenvectors of the Jacobian matrix A eval-
uated at the equilibrium point. The eigensolutions of
the Jacobian matrix are complex-valued in general.
Such eigensolutions exist, for example, as modes of
structural vibration. If the aerodynamics is modelled
using CFD, complex-valued fluid modes can be found
aswell. Otherwise, for linear aerodynamics such as dis-
cussed in this paper, eigensolutions associated with the
fluid unknowns are purely real-valued. Often, a suit-
able choice is then to retain lower frequency, weakly
damped modes which are associated with large ampli-
tudes and hence dominate the system dynamics.

The set of right eigenvectors φi is obtained by

Aφi = λiφi , for i = 1, . . . ,m (5)

while the corresponding adjoint problem

AHψi = λ̄iψi , for i = 1, . . . ,m (6)

gives the set of left eigenvectors ψi . The superscript H
denotes the conjugate transpose (i.e. Hermitian). The
right and left eigenvectors are used to form the corre-
sponding modal matrices, denoted by Φ and Ψ ,

Φ = [φ1, . . . ,φm] , Ψ = [
ψ1, . . . ,ψm

]
,

Φ,Ψ ∈ C
n×m (7)

It is convenient to scale the eigenvectors to satisfy the
biorthonormality conditions,

Ψ HΦ = I, Ψ HΦ̄ = O, I, O ∈ R
m×m (8)

where matrices I and O are the identity matrix and a
zero matrix, respectively. The biorthonormality condi-
tions also provide the following results

Ψ HAΦ = Λ, Ψ HAΦ̄ = O (9)

where Λ ∈ C
m×m is a diagonal matrix containing the

eigenvalues.1

1 Note in the case of a real-valued eigensolution, the biortho-
normality conditions can no longer be satisfied as φ = φ̄.
These eigenvectors are then scaled such that ψHφ = 1

2 giving
ψHAφ = 1

2λwhich is convenient in order to use consistent nota-
tion when dealing both with real- and complex-valued modes.
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Thevectorw is represented by a small set ofm eigen-
vectors using the following coordinate transformation

w = Φ z + Φ̄ z̄ (10)

where z ∈ C
m is the state-space vector governing

the dynamics of the reduced-order nonlinear system.
Essentially,w is represented as a linear combination of
right eigenvectors with z as the time-dependent ampli-
tude. The nonlinear ROM is then formed by substitu-
tion. Premultiplying each term by the Hermitian of the
left modal matrix, the nonlinear reduced formulation
takes the form

ż = Λz + ΨHF
(
Φ z + Φ̄ z̄

)

+ ΨH
(
RΘ + AΘΦ z + AΘΦ̄ z̄ + FΘ

(
Φ z + Φ̄ z̄

))
θ

(11)

Contained in function F, the functionsB to E depend-
ing on the state variables w have to be transformed
as well to be written in terms of z. Observe while the
biorthonormality conditions of Eq. (9) hold true for the
Jacobian matrix A, they do not apply to AΘ . The evalu-
ation of FΘ simply requires the termsBΘ to EΘ which
means differentiating all the functions in Eq. (3) with
respect toΘ . Once the equilibriumpoint and eigensolu-
tion are determined, the terms of the reduced formula-
tion involving full-order operations only need to be cal-
culated once and stored initially. Operations involved,
when solving Eq. (11) for arbitrary parameter changes,
scale with m rather than n.

A special case arises when a single critical mode is
used as the basis with m = 1. The critical mode cor-
responds to a Hopf bifurcation where a single pair of
complex conjugate eigenvalues of the Jacobian matrix
crosses the imaginary axis. Then, Eqs. (5) and (6)
reduce to a single eigenvalue problem, and the eval-
uation of the vector functions as shown in Eqs. (49)–
(52) becomes straightforward as all summations van-
ish. It is expected that steady-state LCO is dominated
by the critical mode as the contribution from all other
modes are small eventually. Hence, the ROM con-
structed based on this single mode is able to predict
the steady-state LCO amplitude. However, this ROM
would fail to predict any transient behaviour where the
contributions from non-critical modes have significant
influence. Interestingly, for the current test cases with
a trivial equilibrium solution, it can be shown that the
centre manifold approach [15] becomes equivalent to
such critical mode ROM when expanding the Taylor
series up to third order only.

2.3 Discussion of computational cost

Now the cost of forming and integrating the reduced
formulation is discussed in more detail. As explicitly
shown in “Appendix 2”, each function of increasing
order of derivativeB to E involves increasing numbers
of terms for its evaluation when written as function of
z. This relation is presented in Fig. 1. The symmetry
properties of the multilinear functions, e.g.B (x, y) =
B ( y, x), C (x, y, y) = C ( y, x, y) = C ( y, y, x) and
so on, can be exploited to gain two advantages. First,
fewer terms are required to construct the ROM initially,
and secondly, fewer operations are performed for the
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evaluation of the dynamics of z in Eq. (11). Thus, the
costs of forming and integrating the reduced model are
both decreased.

Consider the test cases discussed hereafter. All the
terms of the ROM are evaluated analytically as a sim-
ple pitch–plunge aerofoil structural model with linear
aerodynamics is presented. However, if the physical
model is more complex, such as a finite element model
for the structure and CFD for nonlinear aerodynam-
ics, then analytical evaluation is usually not possible.
Thus, a matrix-free approach using finite differences
is necessary to construct the functions of higher-order
derivatives requiring only the evaluation of the residual
function. The number of residual evaluations per finite
difference approximation depends on the order of
derivative to be approximated and the order of the finite
difference. As an example in “Appendix 2”, the second-
order central difference schemes in Eq. (53) involve
between two to six residual evaluations for the func-
tions B to E with a single argument.

In addition, the finite difference approximations of
the functions B to E are defined for a single argu-
ment. For a function with mixed arguments, i.e. dif-
ferent eigenvectors, a set of identities must be used to
place the evaluation in a suitable form with a single
argument, e.g.

B (x, y) = 1
4

(B (x + y, x + y) − B (x − y, x − y)
)

C (x, y, y) = 1
6

(C (x + y, x + y, x + y)

+C (x − y, x − y, x − y) − 2C (x, x, x)
)

and so on. Thus, several finite differences are required
for a term with mixed arguments. Additionally, the
arguments of the terms are, in general, complex-valued.
In situations where complex arithmetic is not possible,
such as industrial finite element or CFD codes, these
identities must be used again to isolate the real and
imaginary parts of the arguments which results in addi-
tional finite difference operations [15].

It can be concluded that the total number of resid-
ual evaluations required to approximate a single func-
tion of a higher-order derivative is significantly higher
than the number of terms shown in Fig. 1. Using many
modes in the ROM basis as well as higher-order Taylor
expansion, millions of full-order residual evaluations
could be required making the construction of the ROM
prohibitive. Few, well-selected, dominant modes must
therefore be chosen.

Time integrating the ROM demands the evaluation
of the dynamics of the reduced state z in Eq. (11). The

computational cost associatedwith running theROM is
directly related to the results presented in Fig. 1. Once
the ROM terms are evaluated either analytically or by
finite differences, projection with Ψ H gives complex-
valued terms, the number of which scales with m.
Integrationmethods for ordinary differential equations,
such as schemes of the Runge–Kutta family, are read-
ily available working with complex arithmetic as well.
Using industrial finite element or CFD codes, the cost
of integrating the governing equations of the reduced-
order model will remain small in comparison. It is
important to note that the construction of the ROM
from the full-order system is as expensive as running
the full-order simulation. This is the case with most
ROM formulations of any flavour. However, the cur-
rent formulation allows the construction of the ROM
once and for all, while subsequent parameter changes
require minimal additional cost.

3 Two degree-of-freedom aerofoil model

As shown in Fig. 2, a standard two degree-of-freedom
aerofoilmodel elastically supported in plunge and pitch
is considered. The plunge deformation is indicated by
h positive downward, and the pitch angle α is posi-
tive nose-up. The terms m, b and ah are the aerofoil
mass, the semi-chord length and the nondimensional
distance from the mid-chord to the elastic axis, respec-
tively. The term Iα represents the moment of inertia
about the elastic axis given in dimensionless form as
radius of gyration rα = √

Iα/mb2. The static moment
about the elastic axis is Sα = mxαb where xαb denotes
the offset of the centre of gravity from the elastic axis.
The terms Kh and Kα denote the spring stiffness coef-
ficients in bending and torsion, respectively. While the

Fig. 2 Two degree-of-freedom pitch–plunge aerofoil
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bending stiffness is linear, the torsional spring is mod-
elled by a fifth-order polynomial. The natural uncou-
pled frequency in plunge is denotedωh = √

Kh/m and
similarly for pitch ωα = √

Kα/Iα . The frequency ratio
is given by ω̄ = ωh/ωα . The structural damping coef-
ficients (not explicitly given in the figure) are denoted
by ζξ and ζα , respectively.

Using the nondimensionalisation

h = ξb,
d

dt
= d

dτ

U

b
and ū = U

bωα

(12)

where ū, as a nondimensional representation of the
freestream velocity U , is referred to as the reduced
velocity, the equations of motion are derived as

ξ̈ + xαα̈ + 2ζξ
ω̄
ū ξ̇ + ω̄2

ū2
ξ = − CL

π μ
(13)

xαξ̈ + r2αα̈ + 2ζα
r2α
ū α̇ + r2α

ū2
fα = 2CM

πμ
(14)

with (̇ ) indicating derivatives with respect to nondi-
mensional time τ and μ = m/

(
πρb2

)
describing the

aerofoil-to-fluid mass ratio (where ρ is the freestream
density). The nonlinear torsional spring polynomial fα
is given by

fα = α + βα3α
3 + βα5α

5 (15)

where βα3 and βα5 are the specific stiffness coefficients
corresponding to the cubic and quintic nonlinearity.
Figure 3 presents the torsional spring stiffness fα for
the linear case as well as the two baseline configura-
tions discussed below.

In this study, the aerodynamic coefficients of lift CL

and moment CM about the elastic axis originate from
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Fig. 3 Torsional spring polynomial fα

two physical sources, i.e. contributions due to the wing
motion and due to gust disturbance. The coefficients
can then be written as

CL = Cm
L + Cg

L and CM = Cm
M + Cg

M (16)

where the superscripts m and g refer to contributions
from aerofoil motion and gust, respectively.

To proceed with the aerodynamic formulation, the
nondimensional downwash at the three-quarter chord
point due to the structural motion in pitch and plunge
is introduced as

w0.75 (τ ) = α (τ) + ξ̇ (τ ) + ( 1
2 − ah

)
α̇ (τ ) (17)

Then the lift is obtained following [11] as

Cm
L = π

(
ξ̈ − ah α̈

) + πα̇

+ 2π

(
w0.75 (0) Φw (τ )

+
∫ τ

0
ẇ0.75 (σ ) Φw (τ − σ) dσ

)
(18)

where the Wagner function Φw (τ ) is approximated by

Φw (τ ) = 1 − Ψ1e
−ε1τ − Ψ2e

−ε2τ (19)

with constants Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455
and ε2 = 0.3 following [14]. The Wagner function
describes the ratio of transient to steady-state lift (with
circulatory origin) for a general aerofoil motion. Note
that Φw(0) = 0.5. Thus, while terms involving the
Wagner function denote circulatory contribution, the
remaining terms are of non-circulatory origin. Accord-
ingly, the pitching moment coefficient is defined as

Cm
M = 1

2πah
(
ξ̈ − ah α̈

) − 1
2π

( 1
2 − ah

)
α̇ − 1

16πα̈

+π
(
ah + 1

2

) (
w0.75 (0)Φw (τ )

+
∫ τ

0
ẇ0.75 (σ )Φw (τ − σ) dσ

)
(20)

The lift and moment coefficients are modified here
by additional terms to account for an arbitrary gust
excitation Wg(τ ) as discussed in [8]. These terms are
explicitly given by

Cg
L = 2π

(
Wg (0) Ψk (τ )

+
∫ τ

0
Ẇg(σ )Ψk (τ − σ) dσ

)
(21)
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Cg
M = π

(
ah + 1

2

) (
Wg (0) Ψk (τ )

+
∫ τ

0
Ẇg(σ )Ψk (τ − σ) dσ

)
(22)

where the Küssner function Ψk (τ ) is approximated in
the form

Ψk (τ ) = 1 − Ψ3e
−ε3τ − Ψ4e

−ε4τ (23)

with constants Ψ3 = 0.5792, Ψ4 = 0.4208, ε3 =
0.1393 and ε4 = 1.802 as given in [19]. The Küssner
function describes the ratio of transient to steady-state
lift for an aerofoil penetrating a sharp-edged gust. Note
that Ψk (0) = 0, indicating that the initial lift build up
due to the aerofoil entering a sharp-edged gust is zero.

The above expressions for aerodynamic lift and
moment coefficients are integro-differential equations.
The terms involving the convolution integral can be
eliminated by introducing auxiliary variables [16]

w1 (τ ) =
∫ τ

0
e−ε1(τ−σ)ξ (σ ) dσ

w2 (τ ) =
∫ τ

0
e−ε2(τ−σ)ξ (σ ) dσ

w3 (τ ) =
∫ τ

0
e−ε1(τ−σ)α (σ ) dσ

w4 (τ ) =
∫ τ

0
e−ε2(τ−σ)α (σ ) dσ

w5 (τ ) =
∫ τ

0
e−ε3(τ−σ)Wg (σ ) dσ

w6 (τ ) =
∫ τ

0
e−ε4(τ−σ)Wg (σ ) dσ (24)

the dynamics of which are evaluated as

ẇ1 = ξ − ε1w1 ẇ2 = ξ − ε2w2

ẇ3 = α − ε1w3 ẇ4 = α − ε2w4

ẇ5 = Wg − ε3w5 ẇ6 = Wg − ε4w6 (25)

using the Leibniz integral rule.
Both the structural equations and the aerodynamic

force and moment expressions depend on the same
shared system states, which are Xs for the structural
degrees of freedom andW f for the augmented aerody-
namic states,

Xs = [ξ, α]T (26)

W f = [w1, w2, w3, w4, w5, w6]
T (27)

Combining the equations and collecting the coefficients
of common terms, a set of governing ordinary differen-
tial equations describing the dynamics of the structural

system are obtained. This is expressed inmatrix–vector
form as

M Ẍs + C Ẋs + K Xs + kN (Xs) + D f W f = fa
(28)

where the terms M , C and K are the effective mass,
damping and stiffness matrices containing structural
and aerodynamic contributions, kN is a nonlinear
vector arising from the polynomial stiffness, and fa
arises from the influence of initial conditions upon the
unsteady aerodynamic forces. The matrix D f relates
the structural equations to the augmented aerodynamic
states. Similarly, the aerodynamics system in Eq. (25)
can be formulated as

Ẇ f = A f f W f + A f xXs + fg (29)

with matrix A f f relating the fluid unknowns to their
first temporal derivatives and matrix A f x coupling the
fluid equations to the structural degrees of freedom.
The vector fg describes the influence of the external
gust disturbance on the aerodynamic equations. The
explicit form of these matrices and vectors is given in
“Appendix 1”.

In the final step, Eqs. (28) and (29) are recast in a
coupled first-order ordinary differential equation of the
general form as given in Eq. (1) where the unknowns
are partitioned into structural and aerodynamic contri-
butions

W =
[
WT

s ,WT
f

]T
with Ws =

[
XT
s , ẊT

s

]T
(30)

and the system parameters Θ consist of the reduced
velocity ū and the gust velocity Wg . The correspond-
ing residual vector R is given by

R
(
W ,Θ

) = AL
(
ū
)
W + bN

(
W , ū

) + ba + be
(
Wg

)

(31)

where the matrix AL contains the linear contributions
only and is defined as

AL =
⎛
⎝

0 I 0
−M−1K −M−1C Aẋ f

A f x 0 A f f

⎞
⎠ (32)

The matrix blocks Aẋ f = −M−1D f and A f x cou-
ple the structural and aerodynamic equations. The vec-
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tors bN , ba and be denote the nonlinear terms, aerody-
namic contribution due to initial conditions and exter-
nal inputs, respectively,

bN =
⎛
⎝

0
−M−1kN

0

⎞
⎠ , ba =

⎛
⎝

0
−M−1 fa

0

⎞
⎠ ,

be =
⎛
⎝

0
0
fg

⎞
⎠ (33)

Note that the equilibrium point for the aerofoil model
presented herein is the trivial solution.

The set of first-order ordinary differential equations
in time is the starting point for the application of the
model reduction presented in Sect. 2.2. As the aerody-
namics are linear following the theories of Wagner and
Küssner, the higher-order terms in the model reduc-
tion arise only from the nonlinear terms contained in
vector bN . The functions B to E are evaluated analyt-
ically herein, which is straightforward for the pitch–
plunge aerofoil structural model with linear aerody-
namics, and have been tested by comparison with finite
difference evaluations. Since the nonlinear residual, the
Jacobian matrix and the higher-order derivatives are
all known analytically, their derivatives with respect
to the reduced velocity ū follow immediately as well.
To account for the gust input in the reduced model, the
derivative of the external input vector be with respect to
the gust velocityWg is required adding a contribution to
RΘ in Eq. (11). As is explicitly shown in “Appendix 1”,
the only nonzero entries in vector be take the values of
the gust velocity and the derivative with respect to gust
velocity becomes trivial.

Operations with higher-order derivatives, such as
vector multiplication, become prohibitive using dense
array storage schemes. Since these higher-dimensional
arrays are very sparse due to the discrete polyno-
mial form of the structural nonlinearity, a higher-order
extension of the well-known compressed sparse row
format [23] has been devised for the work presented
herein. All sparse array operations have been compared
to equivalent dense operations for validation, and very
significant savings in computing time are achieved.

4 Results

The structural model used for the analysis is described
by the parameters ω̄ = 0.2, μ = 100, ah = −0.5,

xα = 0.25 and rα = 0.5.While the plunge spring is lin-
ear, two different nonlinear springs in the pitch degree
of freedom are considered. The first configuration, fol-
lowing [17], is a cubic hardening spring with βα3 = 3,
while the second configuration, following [22], is cubic
softening and quintic hardening with βα3 = −3 and
βα5 = 20. No structural damping is assumed in the
analysis herein. From here on, direct integration of
Eq. (1) with the residual defined in Eq. (31) is referred
to as reference solution.

4.1 Linear stability analysis

While the model reduction approach based on multiple
modes can be constructed at any value of the bifurcation
parameter (i.e. the reduced velocity ū), the reduction
approach based on a single mode requires the critical
eigensolution. Locating the system’s bifurcation point
is achieved by varying the reduced velocity ū and solv-
ing for the eigenvalues of the Jacobian matrix A. The
system has two complex conjugate pairs of eigenvalues
corresponding to the two structural degrees of freedom
and four purely real-valued eigenvalues correspond-
ing to the aerodynamic states. There are additionally
two purely real-valued eigenvalues corresponding to
the gust states w5 and w6 in Eq. (27). The point where
the real part of a pair of complex conjugate eigenvalues
vanishes indicates the Hopf bifurcation.

The tracing of the eigenvalues, originating in the
structural part of the coupled system, with respect to
the reduced velocity is shown in Fig. 4. The results
are confirmed with the results obtained in [17] with
a bifurcation point found at about ūL = 6.285. This
is the point where the reduced-order models are con-
structed in the subsequent discussion. The construc-
tion is done once and for all, while arbitrary parameter
changes (i.e. reduced velocity and gust disturbances)
can then be included at negligible extra cost.

4.2 Supercritical bifurcation

The first scenario considered here is LCO arising from
a supercritical bifurcation corresponding to the case of
a cubic hardening spring with βα3 = 3. The nonlinear
reduced-order models based both on multiple modes
and the critical mode are constructed at the bifurcation
point. Since the nonlinearity is cubic only, the terms
up to C must be evaluated in the ROM construction,
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Fig. 4 Eigenvalue tracing. a Real part, b imaginary part

while functions D and E are zero. Additionally, since
the steady-state solution is trivial, B is zero as well.

Limit-cycle oscillation induced by an initial distur-
bance is studied first. The reduced velocity is set to five
per cent above the bifurcation point, and the system
is excited by an initial disturbance in pitch of 5◦. Due
to the nonlinear cubic hardening restoring moment in
pitch, the system exhibits a stable LCO for reduced
velocities above the flutter point. Figure 5 shows the
time history of the LCO as predicted by both critical
and multiple-mode ROM compared with the full-order
reference solution. The two modes used in the con-
struction of themultiple-mode ROMoriginate from the
structural vibration problem. Excellent agreement with
the full-order solution is observed throughout. The crit-
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Fig. 5 Transient leading to supercritical LCO due to initial pitch
disturbance of 5◦, ū = 6.599.aPlunge response,bpitch response

icalmodeROMpredicts the amplitude of theLCOwell,
although discrepancies are found during the transient
response up to approximately 100 time units. Since the
critical mode ROM formulation relies on information
exclusively from the single critical mode, it is clear
why this type of behaviour is observed. In the transi-
tion period to a steady-state limit-cycle response, the
dynamics of the system are influenced by contributions
from the non-critical structural mode as well until it is
damped out in time. Once the steady-state limit-cycle
is reached, the dynamics are dominated by the single
critical mode.

A point should also be noted about the discrep-
ancy in the initial conditions between the solutions in
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Fig. 5. Specifically, in the full-order reference solution
the initial pitch is set to 5◦, while after transforma-
tion to and from the reduced space the initial pitch
obtained is about 3◦ for the ROM solution. Similar
behaviour is found in the plunge degree of freedom,
which is not reproduced as zero. The critical mode
ROM (m = 1) depends exclusively on the critical
mode, and the reduced space spanned by this single
mode cannot fully represent the corresponding initial
condition in physical space.Making the transformation
to the reduced space with z (0) = Ψ Hw (0) to obtain
the initial condition of the reduced state variable z, and
back to physical space with w (0) = Φ z (0) + Φ̄ z̄ (0),
information is lost and the difference in the initial con-
dition arises. Indeed, retaining all modes of a physical
system, the expression ΦΨ H + Φ̄Ψ̄ H = I is satisfied
otherwise. The multiple-mode ROM (m = 2) solution
is already significantly improving the results and thus
confirming the choice of keeping two modes.

Limit-cycle oscillation can also be induced by gust
disturbance. Figure 6 shows the same system disturbed
by a 1-Cosine gust. The gust profile is defined as

Wg (τ ) = 1
2W0

(
1 − cos

(
2πL−1

g (τ − τ0)
))

(34)

with the dimensionless parameters being gust intensity
W0 = 0.1 (i.e. 10% of freestream speed), gust wave-
length Lg = 20 semi-chord lengths andgust initial time
τ0 = 10. For the construction of the multiple-mode
ROM, the effect of including two additional modes has
been assessed as only including the structural vibra-
tion modes is not sufficient for accuracy during the
gust excitation. The first additional mode corresponds
to the real-valued eigenvalue of λ = −0.1393 which
is the lower time constant used in the approximation
of the Küssner function. This mode is demonstrated
to be dominant in coupling the structural response to
the gust input as discussed in [7]. The multiple modes
ROM constructed using these three modes shows good
agreement with the full-order solution.

However, differences in the transient response up
to 100 time units are still observed, particularly in
the plunge response. This prediction is significantly
improved by including an additional fourth mode of a
real-valued eigenvalue λ = −0.03178 corresponding
to the Wagner aerodynamics. Its value changes with
respect to reduced velocity and can always be iden-
tified as it is close to the value of the lower time con-
stant used in the approximation of theWagner function,
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Fig. 6 Transient leading to supercritical LCO due to gust dis-
turbance, ū = 6.599. a Plunge response, b pitch response

while the remaining eigenvalues corresponding to the
Wagner aerodynamic states appear as repeated exact
values of the time constants. The critical mode ROM
predicts the steady-state LCO well but fails during the
gust disturbance. The consideration here is that the crit-
ical mode ROM lacks the gust mode and is thus unable
to correctly capture the transition into the LCO.

By producing a series of time histories, it is possible
to trace the plots in Figs. 7 and 8 showing the evolu-
tion of the stable limit-cycle amplitude with respect to
the reduced velocity. Results are compared with pre-
dictions presented in [17] which were obtained via
full-order time-domain simulations. In Fig. 7, the ROM
construction retains only first-order derivatives in the
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Fig. 7 Supercritical LCO amplitude retaining first-order deriv-
atives in ū. a Plunge amplitude, b pitch response

Taylor expansion with respect to the reduced velocity,
while in Fig. 8 every term up to third order is included.
Good agreement is observed between the different pre-
dictions of reduced models and reference solution. It
should be noted here that the current reference solu-
tion reproduces the results from [17] accurately. In
Fig. 7, the plunge and pitch amplitude predictions by
the reduced models show generally good agreement
with each other,while larger amplitude discrepancies to
the reference solution are observed at higherflowveloc-
ities. In contrast, the amplitude predictions at higher
flow velocities as shown in Fig. 8 are in much closer
agreement with the reference solution. This demon-
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Fig. 8 Supercritical LCO amplitude retaining derivatives up to
third order in ū. a Plunge amplitude, b pitch response

strates the improvement when including higher-order
derivatives with respect to the reduced velocity.

As is shown by the results presented, a source of
error in the reduced-order formulation is the truncation
of the Taylor series expansion, while the overall quality
of the prediction is improved by including higher-order
derivatives with respect to the system parameter. The
reduced model is also limited by the set of basis vec-
tors used in its construction, and any information lost
with the excluded vectors is an inherent and necessary
concession. Thus, identifying the dominant modes is
critical for constructing an accurate and representative
reduced-order model.
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Fig. 9 Supercritical LCO amplitudes (βα3 > 0) and subcritical
flutter instability onset (βα3 ≤ 0) for various values of nonlin-
earity

It should also be noted that in the high velocity
region the amplitudes in pitch and plunge are large,
exceeding for instance 20◦ in pitch angle. This is unre-
alistic in the context of the linear aerodynamic theory
applied here due to the appearance of nonlinear aero-
dynamic phenomena such as massive boundary layer
separation. However, the results presented herein are
nevertheless solutions of the models used to approxi-
mate real physics.

Finally, to demonstrate the robustness of the mod-
elling approach, we present results for various values
of the nonlinear term βα3 including subcritical flutter
instabilities, rather than limit-cycle responses, for neg-
ative stiffness constants. Figure 9 compares the full-
order reference solutions with results from the reduced
formulation based on the structural modes only and
retaining derivatives up to third order with respect
to the reduced velocity. Excellent agreement is found
throughout. Note that the subcritical flutter boundary
(dashed line) is indicated by the critical initial pitching
angle α(0) to cause the instability. All remaining initial
values are set to zero.

4.3 Subcritical bifurcation

Subcritical limit-cycle responses corresponding to the
case of a cubic softening combinedwith quintic harden-
ing springwith βα3 = −3 and βα5 = 20 are considered
next. The general mechanism is that the cubic softening

nonlinearity contributes to a destabilising effect, while
at large amplitudes the quintic hardening nonlinearity
acts to constrain the system response from diverging.
From Fig. 3, a stable LCO amplitude in pitch deflection
of about 20◦–25◦ is expected since here the hardening
effect exceeds the softening term. In the presence of the
softening nonlinearity, limit-cycle responses can occur
at velocities below the linear flutter point. As above,
the reduced models are constructed once and for all
at the bifurcation point. Since the discrete nonlinearity
now extends to quintic order, terms up to E must be
evaluated. Note that functions B andD are zero as the
equilibrium solution is trivial.

Most importantly, the reduced-order formulation is
capable of predicting subcritical limit-cycle response
resulting from structural softening nonlinearity as a
consequence of extending the formulation to include up
to fifth-order derivatives in the state variables. A lower-
order formulation, such as of cubic order, used previ-
ously cannot predict this response. Figure 10 shows the
transition to LCO at a reduced velocity three per cent
below the linear flutter point. The initial condition here
is a disturbance in pitch of 13◦, the reason of which will
be explained below. Similarly to the case of supercriti-
cal bifurcation, the modes used for the construction of
the multiple-mode ROM are the two complex-valued
eigenmodes corresponding to the structural degrees of
freedom. Excellent agreement with the full-order solu-
tion is found. The critical mode ROM predicts the
steady-state limit-cycle response well but shows sig-
nificant amplitude differences in the transition period.
This is in line with the discussion for the case of super-
critical bifurcation in Fig. 5 and due to the limited infor-
mation contained in the critical mode.

As with the supercritical case, subcritical LCO can
also be induced by a gust disturbance, now even below
the flutter point. Figure 11 shows the system sub-
jected to the 1-Cosine gust profile with gust inten-
sity W0 = 0.1, wavelength Lg = 20 and initial time
τ0 = 10. Corresponding to the supercritical case,
the same two additional modes are assessed in the
prediction of the transient behaviour. The conclusion
remains unchanged. The best prediction is obtained
by including the fourth mode corresponding to the
purely real-valued eigenvalue of λ = −0.03178. As
expected, the critical mode ROM predicts the steady-
state limit-cycle amplitude reasonably well but fails to
accurately capture the response during the gust distur-
bance phase.

123



1004 G. Gai, S. Timme

non-dimensional time

no
n-

di
m

en
si

on
al

 p
lu

ng
e

0 50 100 150 200 250 300 350
-1.5

-1

-0.5

0

0.5

1

1.5 reference solution
ROM m=1
ROM m=2

non-dimensional time

pi
tc

h 
in

 d
eg

re
es

0 50 100 150 200 250 300 350
-30

-20

-10

0

10

20

30
reference solution
ROM m=1
ROM m=2

(a)

(b)

Fig. 10 Transient leading to subcritical LCO due to initial pitch
disturbance of 13◦, ū = 6.097. a Plunge response, b pitch
response

In the case of subcritical bifurcation, the presence
of the quintic hardening stiffness constrains the sys-
tem at high amplitudes, and consequently, stable large
amplitude LCO is observed in Figs. 12 and 13 as indi-
cated by the characteristic stable branch. The stable
limit-cycle pitch amplitude is confirmed with results
presented in [22]. The stable branch extends to reduced
velocities below the bifurcation point. In this region, if
the system is subjected to large enough disturbances
the response will jump into the stable branch. Accord-
ingly, if the disturbances are not large enough to incite
the jump, the response will decay to zero. The criti-
cal initial pitching angle and plunge deflection causing
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Fig. 11 Transient leading to subcritical LCO due to gust distur-
bance, ū = 6.097. a Plunge response, b pitch response

the transition to stable large amplitude LCO are high-
lighted by the respective, as referred to herein, unstable
branch. Consequently, to obtain stable LCO response
below the flutter point, the initial condition required is
dictated by the unstable branch. This justifies the choice
of the initial pitch disturbance of 13◦ stated above for
the response obtained in Fig. 10 as it is well above the
unstable branch. For completeness, several other val-
ues above the unstable branch are tested and result in
the same steady-state LCO amplitude. It is important to
note that the stable branch is independent of the initial
conditions applied.

In the following, the evolution of the stable limit-
cycle amplitude with respect to the reduced velocity is
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Fig. 12 Subcritical LCO amplitude retaining first-order deriva-
tives in ū. a Plunge amplitude, b pitch amplitude

traced. In Fig. 12, the constructed ROM retains first-
order derivatives in the reduced velocity only, while
Fig. 13 presents corresponding results for the ROM for-
mulation up to third order in the reduced velocity. The
reference solution is compared with results from three
reduced models including the critical mode ROM as
well as themultiple-modeROMbased on two structural
vibration modes only and the additional aerodynamic
mode corresponding to the lower time constant in the
Wagner function approximation with λ = −0.03178.
This is the same mode mentioned above with its eigen-
value changing with respect to the reduced velocity.
The figures permit some interesting observations.

reduced velocity ratio u/uL

no
n-

di
m

en
si

on
al

 p
lu

ng
e 

am
pl

itu
de

0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

reference solution
ROM m=1
ROM m=3

stable branch

unstable branch
due to initial plunge

reduced velocity ratio u/uL

pi
tc

h 
am

pl
itu

de
 in

 d
eg

re
es

0.95 1 1.05 1.1
0

5

10

15

20

25

30

reference solution
ROM m=1
ROM m=3
Pettit and Beran (2003)

stable branch

unstable branch
due to initial pitch

(a)

(b)

Fig. 13 Subcritical LCO amplitude retaining derivatives up to
third order in ū. a Plunge amplitude, b pitch amplitude

First, the critical mode ROM does predict the sub-
critical limit-cycle response even though discrepancies
are observed. Also, the stable LCO amplitude as pre-
dicted by the multiple-mode ROM, based on the two
structural modes only, shows good agreement with the
full-order solution except for higher values of reduced
velocity. Here the multiple-mode ROM based on two
structural modes fails. This behaviour is not improved
when including higher-order derivatives with respect to
the reduced velocity and is thus not shown in Fig. 13.
Since it is expected that the reduced model forms a bet-
ter representation of the full-order systemwith increas-
ing number ofmodes, excellent agreement with the ref-
erence solution is found throughout when including the
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aerodynamic mode. This emphasises again the impor-
tance of identifying the dominant modes.

Secondly, as is found for the supercritical case,
including higher-order derivatives in the reduced veloc-
ity improves the ROM predictions. This can be seen
clearly from the turning point where the unstable
branch transitions into the stable branch. In Fig. 12,
the turning point as predicted by the reduced models
are clearly offset from the reference solution, while
in Fig. 13 excellent agreement between the solutions
is observed. Note that for Fig. 13 the unstable branch
in pitch as predicted by the critical mode ROM bet-
ter agrees with the reference solution compared to the
unstable branch in plunge. As the critical mode origi-
nates in the pitch degree of freedom, it lacks informa-
tion to fully represent the plunge response for the criti-
cal mode formulation. The multiple-mode ROM on the
other hand includes both the pitch and plunge degrees
of freedom giving an overall excellent agreement to the
reference solution.

As with the supercritical configuration in Sect. 4.2,
we include a parameter study to demonstrate the robust-
ness of the modelling approach. Figure 14 presents
two additional scenarios of a fifth-order nonlinearity,
besides the baseline configuration. The reduced-order
formulation includes the three modes discussed above
and expands the residual with respect to the reduced
velocity up to third order. Overall good agreement with
the reference solution is found for all cases.
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Fig. 14 Subcritical LCO amplitudes for three sets of nonlinear-
ity up to fifth order

5 Conclusions

In this work, a nonlinear model reduction approach
based on eigenmode decomposition and projection is
presented focusing on the prediction of sub- and super-
critical limit-cycle behaviour. The model reduction is
formulated to include up to fifth-order derivatives in the
Taylor expansion of the nonlinear full-order residual
function.Theunderlyingmotivation is such that higher-
order nonlinear behaviour of the full-order system can
therefore be captured with the extended reduced model
formulation. Themethods are applied to a two degrees-
of-freedompitch–plunge aerofoil structuralmodel cou-
pled with linear aerodynamics. Stiffness nonlinearity is
introduced into the pitch degree of freedom in polyno-
mial form up to fifth order such that the system exhibits
the desired limit-cycle behaviour.

Including multiple modes in the basis, used for pro-
jection of the full-order system, is unnecessary in the
case of a supercritical limit-cycle oscillation if inter-
est lies in the amplitude prediction. Results using only
the critical mode for model reduction are in excel-
lent agreement with the reference solution. If tran-
sient behaviour is important however, as is the case
when gust disturbance is discussed, multiple modes are
required. The situation changes for subcritical limit-
cycle behaviour. Even if the interest is in the ampli-
tude only, the critical mode alone is not sufficient.
While the reduced model based on the critical mode
does predict the subcritical limit-cycle response, mul-
tiple modes are mandatory to resolve the discrepancy
between the reduced model prediction and the refer-
ence solution. If the gust-induced transient is important,
the same conclusion as for the supercritical case can be
reached. Finally, the order of expansion with respect to
the parameters is important as well with higher-order
formulations giving superior results.

Analysis of computational cost shows that if the
number of modes used in the reduced model construc-
tion is large, then forming the reduced model becomes
increasingly expensive. This is particularly true when
the physical problem is complex and analytical expres-
sions of the Jacobian matrix and higher derivatives
are not possible such that finite difference approxima-
tions must be used. The number of residual evaluations
required for the finite differences can easily grow to
the order of millions for the reduced model formula-
tion including fifth-order terms. In the case where only
the single critical mode is used, the associated com-
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putational cost is always feasible. The identification of
few dominant modes is thus an important topic which
needs to be addressed further.
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Appendix 1: Details of two degrees-of-freedom
aerofoil model

The analytical expressions of each term in Eq. (28)
governing the structural solution are given as follows

M =
(
c0 c1
d0 d1

)
, C =

(
c2 c3
d5 d2

)
,

K =
(
c4 c6
d6 d3

)
(35)

kN =
(

0
d43α3 + d45α5

)
(36)

D f =
(
c9 c10 c7 c8 c13 c14
d9 d10 d7 d8 d13 d14

)
(37)

where the coefficients in Eqs. (35) and (37) are defined
following the notation used in [16]. The nonlinear
plunge stiffness coefficients are removed, while new
coefficients are defined for the pitch stiffness coef-
ficients corresponding to the cubic and quintic order
terms. Furthermore, additional terms corresponding to
the gust states are introduced by extending the subscript
number. The nonlinear pitch stiffness coefficients are

d43 = 1
ū2

βα3 d45 = 1
ū2

βα5 (38)

while the additional gust coefficients are

c13 = 2
μ
ε3Ψ3 c14 = 2

μ
ε4Ψ4

d13 = − (2ah+1)
2r2α

c13 d14 = − (2ah+1)
2r2α

c14 (39)

The vector fa is a sum of the contributions from the
initial conditions in the structural degrees of freedom
as well as the gust influence which, as shown below, is
zero,

fa =
(
f (τ ) + f g (τ )

g (τ ) + gg (τ )

)
(40)

Integration by parts of Eqs. (18) and (20) leaves the
following terms depending on initial conditions

f (τ ) = 2
μ

(
ξ (0) + ( 1

2 − ah
)
α (0)

)

× (
ε1Ψ1e

−ε1τ + ε2Ψ2e
−ε2τ

)

g (τ ) = − (2ah+1)
2r2α

f (τ ) (41)

and accordingly, for the gust terms in Eqs. (21) and
(22), we find

f g (τ ) = − 2
μ

(1 − Ψ3 − Ψ4)Wg(τ ) = 0

gg (τ ) = − (2ah+1)
2r2α

f g (τ ) = 0 (42)

where 1 − Ψ3 − Ψ4 is zero.
Similarly, for Eq. (29) governing the aerodynamics,

the different terms are explicitly given by

A f f = −diag (ε1, ε2, ε1, ε2, ε3, ε4) (43)

A f x =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
0 1
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(44)

fg = [
0, 0, 0, 0,Wg,Wg

]T (45)

Appendix 2: Multilinear vector functions of
higher-order derivatives

Following the transformation of variables, functions of
the second- to fifth-order derivatives of the nonlinear
full-order residual vector consist of (2m)K individual
terms when computed directly where superscript K
denotes the order of the derivative (see Table 1). How-
ever, symmetries exist in these functions with respect
to their arguments, such as B (x, y) = B ( y, x) and
C (x, y, y) = C ( y, x, y) = C ( y, y, x) and so on.
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Table 1 Number of terms required per function

Function Direct Exploiting symmetry

B 4m2 m (2m + 1)

C 8m3 m
3

(
4m2 + 6m + 2

)

D 16m4 m
6

(
4m3 + 12m2 + 11m + 3

)

E 32m5 m
15

(
4m4 + 20m3 + 35m2 + 25m + 6

)

These symmetry properties can be exploited to reduce
the total number of individual terms required.

For convenience, define the following auxiliary
terms for the second- and third-order functions

brr = B(
φr ,φr

)
zr zr + 2B(

φr , φ̄r
)
zr z̄r

+B(
φ̄r , φ̄r

)
z̄r z̄r

brs = B(
φr ,φs

)
zr zs + B(

φr , φ̄s
)
zr z̄s

+B(
φ̄r ,φs

)
z̄r zs + B(

φ̄r , φ̄s
)
z̄r z̄s (46)

crrr = C(
φr ,φr ,φr

)
zr zr zr + 3C(

φr ,φr , φ̄r
)
zr zr z̄r

+ 3C(
φr , φ̄r , φ̄r

)
zr z̄r z̄r + C(

φ̄r , φ̄r , φ̄r
)
z̄r z̄r z̄r

crrs = C(
φr ,φr ,φs

)
zr zr zs + C(

φr ,φr , φ̄s
)
zr zr z̄s

+ 2C(
φr , φ̄r ,φs

)
zr z̄r zs + C(

φ̄r , φ̄r ,φs
)
z̄r z̄r zs

+ 2C(
φr , φ̄r , φ̄s

)
zr z̄r z̄s + C(

φ̄r , φ̄r , φ̄s
)
z̄r z̄r z̄s

crss = C(
φr ,φs,φs

)
zr zs zs + C(

φ̄r ,φs,φs
)
z̄r zs zs

+ 2C(
φr ,φs, φ̄s

)
zr zs z̄s + C(

φr , φ̄s, φ̄s
)
zr z̄s z̄s

+ 2C(
φ̄r ,φs, φ̄s

)
z̄r zs z̄s + C(

φ̄r , φ̄s, φ̄s
)
z̄r z̄s z̄s

crst = C(
φr ,φs,φt

)
zr zs zt + C(

φr ,φs, φ̄t
)
zr zs z̄t

+C(
φr , φ̄s,φt

)
zr z̄s zt + C(

φr , φ̄s, φ̄t
)
zr z̄s z̄t

+C(
φ̄r ,φs,φt

)
z̄r zs zt + C(

φ̄r ,φs, φ̄t
)
z̄r zs z̄t

+C(
φ̄r , φ̄s,φt

)
z̄r z̄s zt + C(

φ̄r , φ̄s, φ̄t
)
z̄r z̄s z̄t

(47)

while similar expressions can be obtained for functions
required forD and E . These are omitted here for clar-
ity, while the different permutations of subscripts are
shown below. Then, using the auxiliary terms, func-
tions B through E contained in function F are fully
expanded as

B (w,w) =
m∑

r,s=1

brs

C (w,w,w) =
m∑

r,s,t=1

crst

D (w,w,w,w) =
m∑

r,s,t,u=1

drstu

E (w,w,w,w,w) =
m∑

r,s,t,u,v=1

erstuv (48)

Exploiting symmetry properties, the functions B
through E are reformulated as

B (w,w) =
m∑

r=1

(
brr + 2

m∑
s=r+1

brs

)
(49)

C (w,w,w) =
m∑

r=1

(
crrr

+ 3
m∑

s=r+1

(
crrs + crss + 2

m∑
t=s+1

crst

))
(50)

D (w,w,w,w) =
m∑

r=1

(
drrrr

+ 2
m∑

s=r+1

(
2 (drrrs + drsss) + 3drrss

+ 6
m∑

t=s+1

(
drrst+drsst+drstt+2

m∑
u=t+1

drstu

)))

(51)

E (w,w,w,w,w) =
m∑

r=1

(
errrrr

+ 5
m∑

s=r+1

(
errrrs+erssss+2 (errrss + errsss)

+ 2
m∑

t=s+1

(
2 (errrst + erssst + erstt t )

+ 3 (errsst + errstt + ersstt )

+ 6
m∑

u=t+1

(
errstu+ersstu+ersttu + erstuu

+ 2
m∑

v=u+1

erstuv

))))
(52)

The total number of terms based on these new formula-
tions, as given in Table 1, as well as the direct approach
is illustrated in Fig. 1.

As discussed in Sect. 2.3, finite difference evalua-
tions are often required to form the terms when analyt-
ical expressions of the derivatives are not available. For
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example, the following second-order central difference
schemes in one argument vector x can be used

Ax = 1
2ε

(
R+1 − R−1

)
+ O(

ε2
)

B (x, x) = 1
ε2

(
R+1 − 2R0 + R−1

)
+ O(

ε2
)

C (x, x, x) = 1
2ε3

(
R+2 − 2R+1

+ 2R−1 − R−2

)
+ O(

ε2
)

D (x, x, x, x) = 1
ε4

(
R+2 − 4R+1 + 6R0

−4R−1 + R−2

)
+ O(

ε2
)

E (x, x, x, x, x) = 1
2ε5

(
R+3 − 4R+2 + 5R+1

−5R−1 + 4R−2 − R−3

)
+ O(

ε2
)

(53)

where Rl = R (W0 + lεx).
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