2,670 research outputs found

    Aspect sensitivity measurements of polar mesosphere summer echoes using coherent radar imaging

    Get PDF
    International audienceThe Esrange VHF radar (ESRAD), located in northern Sweden (67.88° N, 21.10° E), has been used to investigate polar mesosphere summer echoes (PMSE). During July and August of 1998, coherent radar imaging (CRI) was used to study the dynamic evolution of PMSE with high temporal and spatial resolution. A CRI analysis provides an estimate of the angular brightness distribution within the radar's probing volume. The brightness distribution is directly related to the radar reflectivity. Consequently, these data are used to investigate the aspect sensitivity of PMSE. In addition to the CRI analysis, the full correlation analysis (FCA) is used to derive estimates of the prevailing three-dimensional wind associated with the observed PMSE. It is shown that regions within the PMSE with enhanced aspect sensitivity have a correspondingly high signal-to-noise ratio (SNR). Although this relationship has been investigated in the past, the present study allows for an estimation of the aspect sensitivity independent of the assumed scattering models and avoids the complications of comparing echo strengths from vertical and off-vertical beams over large horizontal separations, as in the Doppler Beam Swinging (DBS) method. Regions of enhanced aspect sensitivity were additionally shown to correlate with the wave-perturbation induced downward motions of air parcels embedded in the PMSE

    Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence

    Full text link
    We report on calculations of the translational and rotational short-time self-diffusion coefficients DstD^t_s and DsrD^r_s for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electrostatic forces and many-body hydrodynamic interactions (HI). Our computations account for both two-body and three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relations Dst1atϕ4/3D^t_s\propto 1-a_t\phi^{4/3} and Dsr1arϕ2D^r_s\propto 1-a_r\phi^2 depending on volume fraction ϕ\phi, with essentially charge-independent parameters ata_t and ara_r. These scaling relations are strikingly different from the corresponding results for hard spheres. Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly improve the known result for DstD^t_s of hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps

    Analysis of path integrals at low temperature : Box formula, occupation time and ergodic approximation

    Get PDF
    We study the low temperature behaviour of path integrals for a simple one-dimensional model. Starting from the Feynman-Kac formula, we derive a new functional representation of the density matrix at finite temperature, in terms of the occupation times of Brownian motions constrained to stay within boxes with finite sizes. From that representation, we infer a kind of ergodic approximation, which only involves double ordinary integrals. As shown by its applications to different confining potentials, the ergodic approximation turns out to be quite efficient, especially in the low-temperature regime where other usual approximations fail

    The mean observed meteorological structure and circulation of the stratosphere and mesosphere

    Get PDF
    Meteorological soundings of the upper stratosphere and mesosphere, conducted with in situ rocket techniques during all seasons of the year from several sites, ranging in latitude from 8 deg S to 71 deg N, are analyzed. The resulting data are compiled into mean monthly and seasonal profiles of temperature, pressure, density, and wind for each site and are presented in graphical and tabular form. Analyses of these mean values produced time cross sections, quasi-meridional cross sections, and constant level maps which are included

    Theory of Systematic Computational Error in Free Energy Differences

    Get PDF
    Systematic inaccuracy is inherent in any computational estimate of a non-linear average, due to the availability of only a finite number of data values, N. Free energy differences (DF) between two states or systems are critically important examples of such averages in physical, chemical and biological settings. Previous work has demonstrated, empirically, that the ``finite-sampling error'' can be very large -- many times kT -- in DF estimates for simple molecular systems. Here, we present a theoretical description of the inaccuracy, including the exact solution of a sample problem, the precise asymptotic behavior in terms of 1/N for large N, the identification of universal law, and numerical illustrations. The theory relies on corrections to the central and other limit theorems, and thus a role is played by stable (Levy) probability distributions.Comment: 5 pages, 4 figure

    Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density functional theory

    Full text link
    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive-definite pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio L = 0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.Comment: 19 pages, 5 figures, submitted to J. Chem. Phys; new version: minor changes in structure of pape

    Aging and ultra-slow equilibration in concentrated colloidal hard spheres

    Full text link
    We study the dynamic behaviour of concentrated colloidal hard spheres using Time Resolved Correlation, a light scattering technique that can detect the slow evolution of the dynamics in out-of-equilibrium systems. Surprisingly, equilibrium is reached a very long time after sample initialization, the non-stationary regime lasting up to three orders of magnitude more than the relaxation time of the system. Before reaching equilibrium, the system displays unusual aging behaviour. The intermediate scattering function decays faster than exponentially and its relaxation time evolves non-monotonically with sample age.Comment: Submitted to the proceedings of the 6th EPS Liquid Matter Conference, Utrecht 2-6 July 200

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Dynamics of Diblock Copolymers in Dilute Solutions

    Get PDF
    We consider the dynamics of freely translating and rotating diblock (A-B), Gaussian copolymers, in dilute solutions. Using the multiple scattering technique, we have computed the diffusion and the friction coefficients D_AB and Zeta_AB, and the change Eta_AB in the viscosity of the solution as functions of x = N_A/N and t = l_B/l_A, where N_A, N are the number of segments of the A block and of the whole copolymer, respectively, and l_A, l_B are the Kuhn lengths of the A and B blocks. Specific regimes that maximize the efficiency of separation of copolymers with distinct "t" values, have been identified.Comment: 20 pages Revtex, 7 eps figures, needs epsf.tex and amssymb.sty, submitted to Macromolecule
    corecore