1,374 research outputs found

    Allowing for never and episodic consumers when correcting for error in food record measurements of dietary intake

    Get PDF
    Food records, including 24-hour recalls and diet diaries, are considered to provide generally superior measures of long-term dietary intake relative to questionnaire-based methods. Despite the expense of processing food records, they are increasingly used as the main dietary measurement in nutritional epidemiology, in particular in sub-studies nested within prospective cohorts. Food records are, however, subject to excess reports of zero intake. Measurement error is a serious problem in nutritional epidemiology because of the lack of gold standard measurements and results in biased estimated diet–disease associations. In this paper, a 3-part measurement error model, which we call the never and episodic consumers (NEC) model, is outlined for food records. It allows for both real zeros, due to never consumers, and excess zeros, due to episodic consumers (EC). Repeated measurements are required for some study participants to fit the model. Simulation studies are used to compare the results from using the proposed model to correct for measurement error with the results from 3 alternative approaches: a crude approach using the mean of repeated food record measurements as the exposure, a linear regression calibration (RC) approach, and an EC model which does not allow real zeros. The crude approach results in badly attenuated odds ratio estimates, except in the unlikely situation in which a large number of repeat measurements is available for all participants. Where repeat measurements are available for all participants, the 3 correction methods perform equally well. However, when only a subset of the study population has repeat measurements, the NEC model appears to provide the best method for correcting for measurement error, with the 2 alternative correction methods, in particular the linear RC approach, resulting in greater bias and loss of coverage. The NEC model is extended to include adjustment for measurements from food frequency questionnaires, enabling better estimation of the proportion of never consumers when the number of repeat measurements is small. The methods are applied to 7-day diary measurements of alcohol intake in the EPIC-Norfolk study

    A note on a local ergodic theorem for an infinite tower of coverings

    Full text link
    This is a note on a local ergodic theorem for a symmetric exclusion process defined on an infinite tower of coverings, which is associated with a finitely generated residually finite amenable group.Comment: Final version to appear in Springer Proceedings in Mathematics and Statistic

    Entropy and efficiency of a molecular motor model

    Full text link
    In this paper we investigate the use of path-integral formalism and the concepts of entropy and traffic in the context of molecular motors. We show that together with time-reversal symmetry breaking arguments one can find bounds on efficiencies of such motors. To clarify this techinque we use it on one specific model to find both the thermodynamic and the Stokes efficiencies, although the arguments themselves are more general and can be used on a wide class of models. We also show that by considering the molecular motor as a ratchet, one can find additional bounds on the thermodynamic efficiency

    Free Energy Functional for Nonequilibrium Systems: An Exactly Solvable Case

    Full text link
    We consider the steady state of an open system in which there is a flux of matter between two reservoirs at different chemical potentials. For a large system of size NN, the probability of any macroscopic density profile ρ(x)\rho(x) is exp[NF({ρ})]\exp[-N{\cal F}(\{\rho\})]; F{\cal F} thus generalizes to nonequilibrium systems the notion of free energy density for equilibrium systems. Our exact expression for F\cal F is a nonlocal functional of ρ\rho, which yields the macroscopically long range correlations in the nonequilibrium steady state previously predicted by fluctuating hydrodynamics and observed experimentally.Comment: 4 pages, RevTeX. Changes: correct minor errors, add reference, minor rewriting requested by editors and refere

    A limit result for a system of particles in random environment

    Full text link
    We consider an infinite system of particles in one dimension, each particle performs independant Sinai's random walk in random environment. Considering an instant tt, large enough, we prove a result in probability showing that the particles are trapped in the neighborhood of well defined points of the lattice depending on the random environment the time tt and the starting point of the particles.Comment: 11 page

    Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models

    Get PDF
    One-dimensional hard rod gases are explicitly constructed as the limits of discrete systems: exclusion processes involving particles of arbitrary length. Those continuum many-body systems in general do not exhibit the same hydrodynamic properties as the underlying discrete models. Considering as examples a hard rod gas with additional long-range interaction and the generalized asymmetric exclusion process for extended particles (\ell-ASEP), it is shown how a correspondence between continuous and discrete systems must be established instead. This opens up a new possibility to exactly predict the hydrodynamic behaviour of this continuum system under Eulerian scaling by solving its discrete counterpart with analytical or numerical tools. As an illustration, simulations of the totally asymmetric exclusion process (\ell-TASEP) are compared to analytical solutions of the model and applied to the corresponding hard rod gas. The case of short-range interaction is treated separately.Comment: 19 pages, 8 figure

    Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Nonequilibrium phase transition in a non integrable zero-range process

    Full text link
    The present work is an endeavour to determine analytically features of the stationary measure of a non-integrable zero-range process, and to investigate the possible existence of phase transitions for such a nonequilibrium model. The rates defining the model do not satisfy the constraints necessary for the stationary measure to be a product measure. Even in the absence of a drive, detailed balance with respect to this measure is violated. Analytical and numerical investigations on the complete graph demonstrate the existence of a first-order phase transition between a fluid phase and a condensed phase, where a single site has macroscopic occupation. The transition is sudden from an imbalanced fluid where both species have densities larger than the critical density, to a critical neutral fluid and an imbalanced condensate

    Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient

    Full text link
    We prove a law of large numbers and a central limit theorem for a tagged particle in a symmetric simple exclusion process in the one-dimensional lattice with variable diffusion coefficient. The scaling limits are obtained from a similar result for the current through -1/2 for a zero-range process with bond disorder. For the CLT, we prove convergence to a fractional Brownian motion of Hurst exponent 1/4.Comment: 9 page

    On the Hydrodynamic Equilibrium of a Rod in a Lattice Fluid

    Full text link
    We model the behavior of a big (Brazil) nut in a medium of smaller nuts with a stochastic asymmetric simple exclusion dynamics of a polymer-monomer lattice system. The polymer or `rod' can move up or down in an external negative field, occupying N horizontal lattice sites where the monomers cannot enter. The monomers (at most one per site) or `fluid particles' are moving symmetrically in the horizontal plane and asymmetrically in the vertical direction, also with a negative field. For a fixed position of the rod, this lattice fluid is in equilibrium with a vertical height profile reversible for the monomers' motion. Upon `shaking' (speeding up the monomers) the motion of the `rod' dynamically decouples from that of the monomers resulting in a reversible random walk for the rod around an average height proportional to log N.Comment: 19 pages, 2 figure
    corecore