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Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties
of continuum systems from discrete models
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One-dimensional hard rod gases are explicitly constructed as the limits of discrete systems: exclusion
processes involving particles of arbitrary length. Those continuum many-body systems in general do not
exhibit the same hydrodynamic properties as the underlying discrete models. Considering as examples a hard
rod gas with additional long-range interaction and the generalized asymmetric exclusion process for extended
particles, it is shown how a correspondence between continuous and discrete systems must be established
instead. This opens up a possibility to exactly predict the hydrodynamic behavior of this continuum system
under Eulerian scaling by solving its discrete counterpart with analytical or numerical tools. As an illustration,
simulations of the totally asymmetric exclusion process are compared to analytical solutions of the model and
applied to the corresponding hard rod gas. The case of short-range interaction is treated separately.
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I. INTRODUCTION AND OUTLINE scopic features of thé-ASEP and the long-range interacting
a&:ontinuum hard rod gas concerned are examined for their
physical, microscopic causes. The usefulness of the corre-
spondence established between those two systems is illus-
trated in Sec. V B where results from lattice MC simulations
are applied to the continuum hard rod gas.

Modeling stochastic many-body systems is fundament
to the investigation of driven diffusive systeifis-5]. So far,
only a few models have been solved analytically. With grow-
ing computer power, numerical tools like Monte CafiC)
simulations of discrete lattice models have steadily gained i
importance. However, for many physical processes, the re-
striction to discrete space is artificial, and the question arises
as to what extent discretized models lead to a valid descrip-
tion of experimental settings taking place in continuous
space. In the present paper, one-dimensional continuum The ¢-ASEP is a stochastic lattice model for a system of
models are investigated as to their explicit construction fromextended particles which interact via exclusion and which
discrete systems. The continuum gases treated in the follovare exposed to a driving field. The microscopic dynamics of
ing are one-dimensional hard rod gases exposed to an extehe model defines hopping processes of the particles taking
nal driving field. Two types of hard rod gases are presentethblace between neighboring lattice sites with certain stochas-
The first consists of hard rods which do not show any intertic rates. The parametérfixes the length of the particles on
action besides exclusion. This continuum gas is obtained dattice scale. For the cast=1, the ¢-ASEP reduces to the
the limit of the discrete generalized asymmetric exclusionwell-known asymmetric exclusion proce§sSEP) [5]. Fig-
process for extended particlesASEP) [6]. Basic properties ure 1 illustrates the hopping dynamics for a lattice of
of the discrete model and its hydrodynaniidD) limit are L (=35 sites, k=1,...,L, which containsN (=4) particles,
summarized in Sec. Il before carrying out the construction okach covering? (=5) adjacent lattice sites. The position of
its continuum limit explicitly in Sec. lll A. Sections lll Band each particle is by convention taken as the last site that the
Il C are devoted to the investigation of the HD properties ofparticle occupies toward the right-hand side of the chain and
the hard rod gas which turn out very differently from thoseijs marked with a cross. A particle may change its position
of its discrete origin, thé-ASEP. The general proceedings of from a sitek to k+1 with a ratep provided that sit&+1 is
Secs. Il and Il are repeated for the construction and invesempty_ Vice versa, it may hop from siteto k-1 with a
tigation of a second type of hard rod gas in Sec. IV: hard rodstochastic rate provided that sit&k—¢ is not occupied by

with an additional long-range interaction. In Secs.any particle. In the thermodynamic limit the numberof
IV A—IV C such a continuum gas with long-range interaction

is realized as the limit of an exclusion process with headway-

II. DISCRETE MODEL: THE GENERALIZED
ASYMMETRIC EXCLUSION PROCESS

P
dependent hopping rates. This leads to remarkable result N Y21

about the nature of discrete and continuum systems. Analysi: | I|I n '3'6' I|I n ')'Q' PR Iml i’
shows that the hydrodynamic properties of this continuum 5 H L
gas are exactly the same as for the disctet®SEP with <7> Y, a A

constant stochastic rates. In Sec. V A, the common macro q

FIG. 1. The{-ASEP: extended particles covér lattice sites
each and move via next-neighbor hopping with stochastic hopping
*Electronic address: g.schoenherr@fz-juelich.de ratesp andq.
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particles and the numbdr of lattice sites tend to infinity describe the dynamics of a gas of hard rods in continuous
while the particle density remains constant. On a coarsespace. The physical extension of tlieASEP particlesta
grained scale the lattice constaatis a comparably small vanishes on a macroscopic scale and the particles appear like
quantity. In a continuum limie— 0O, the discrete site lab&  point particles from a coarse-grained point of vigsempare

may be replaced by a continuous coordinatka. The evo-  Fig. 2(a), A—B]. In order to observe rods of nonzero exten-
lution of the local particle density(x,t) is determined by & sjon in the continuum limit of space, their length on lattice

continuity equation of the forn6] scale must be rescaled during the limiting procedure as
pP+q

dp=-alp-qafvp] -a*——dw +0@%), (1)

=2 ®

wherev is a normalized average particle veloc|;7]: Ta
1-¢
vzt ®)
1-(€-Dp N=<(ais held constant foa— 0 and indicates the true length

It must be stressed that this equation is an approximation fo?f the rods in physical units. The continuum limit is per-
a system with discrete dynamics and that it does not descrit@rmed for a fixed number of rods of lengthon a chain of
the motion of hard rods with dynamics defined in continuougength A (L— sites. As the numbeit of sites which are
space. Thet-ASEP was originally introduced as a lattice 0ccupied by one particle diverges far- 0, the particle den-
model for protein synthesis in 1968,9] and has been fur- Sity p on lattice scale tends to zero, while the coverage den-
ther investigated in this context recenfly0—13. In those  Sity p°=€p and the volume particle densify=p°/\ remain
works, the extended particles, hopping stochastically along §onstant. Thidhard rod limit of the ¢-ASEP is illustrated in
chain, represent the motion of ribosomes along the codons &fig. 2), A—B.

a m-RNA template. For this purpose the description of the

system by a discrete model is appropriate because the codons o

form a real biological discrete lattice. Seeking to apply the B. Hydrodynamic limit

¢-ASEP to model a greater class of physical experiments o ,

which take place in continuous spaeg., the study of col- The hydrodynamic limit of the continuum hard rod sys-

loidal suspensionsa continuum hard rod gas is constructed €M iS réalized in a second step, considering a big system at
as a limit of the¢-ASEP. constant densityA — o, —o ,N/A=cons). During a sec-

ond coarse-graining process, the lengttof the rods be-
comes a comparably small quantityompare Fig. &), B

I1l. CONTINUUM HARD ROD GAS — C]J. The hydrodynamic equation of the continuum hard rod
_ _ _ ) gas may be deduced as the hard rod limit of the HD equation
A. Construction of a harolI rodtrg];as. Rescaling the particle (1) of the discrete systerfin Fig. 2: (@) B— (b) C]. As the
eng

discrete particle density becomes zero in the hard rod limit,

The derivation of the hydrodynamic equati¢h) of the the coverage density® will be considered instead. In terms
€-ASEP involves a continuum limit, in which the lattice con- of p° and employing the abbreviatio=p-qg and S=(p
stanta approaches zero. This equation in general does notq)/2, Eq.(1) is transformed into
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FIG. 3. The¢-ASEP mass current as a func-
tion of the coverage density®: Asymptotically
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coverage density
. p°(1-p° 5 p° 3 ¢-ASEP will be constructed. Their asymptotic behavior in
dp” =~ aBdy ° + &Sy o° +0(a’) the continuum hard rod limit is discussed in particular for the
1-p%+— 1-p°+— case of partly maximal initial density profiles. For the sake of
¢ ¢ simplicity of notation the(-ASEP shall be limited to its to-
A (p%)? p° tally asymmetric case, the so-callédTASEP, whose hop-
=-aBip +a B)\(l ~ 9 + Sﬂxxl — ¢ ping rates equap=1 andq=0.
P P On Euler scale, only the lowest-order terms of Eq.are
+0(@% (if p*# 1) taken into account for thé-TASEP current,
== a{j(P9], (4) i(p) = p(l-£€p) @
wherej(p°) is the mass current. The scalifigi\/a and the 1-(-1p’

limit of small a have been used to expand the terms. Furtherynich obeys the continuity equation
more, Eq.(4) is only valid for the case of nonmaximal den- .
sity, which has been assumed in the first step in order to be ap(X,t) + dj(p) = 0. (8)

ab!g to perform the apprqximation yvithqut Vie'o.“”g singu'- This partial differential equatiofPDE) governs the evolu-
larities. The case of maximal density will be discussed inq of the average particle fractignper lattice site. In order

Sec. Il C. to obtain the picture of macroscopic rods, it is convenient to

Under Eulerian scalingd, = ad], all terms in the current o506, by the volume particle densify. Furthermore, ev-
of orders higher thama are negligible. The evolution of the ery term¢a is replaced by the constant length Equation

coverage density is determined by (8) is thus transformed into

apC(x,t) + BapS(x,t) =0, p°+1. (5) ap(x,t) +a,j(®) =0, (9)

The asymptotic approach of the mass current as a function gfhere
the coverage density from a convex to a linear function is

demonstrated in Fig. 3. The linearity of the current in the i) = p(1=Xp) _ (10)
hard rod limit implies that all rods are moving with constant 1-Ap+ap
velocity In the following, solutionsu(x,t) of this PDE, of the general
dj form
v=—=B=(p-q) (6)
dp u +[f(ul=0,
into the direction of the drive. In contrast to the discrete
¢-ASEP, interaction effects disappear completely. f(u) = U@ -Au)

“1-\u+au’
C. Solutions of the€¢-TASEP in its hydrodynamic and hard
rod limit u(x,0) = ¢(x), (11)
Equation(5) excludes the case of particle distributions, are constructed for certain initial profiles(x). In the limit

where the density assumes its maximum at some point. Ila— 0 the solutions are solutions of the continuum hard rod
this section, explicit solutions of the Eulerian current of thegas.
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First, choose initial conditions of the form continuity. In the latter case, fluctuations are driven away
) from the point of the(initial) discontinuity in the density
B(x) = {LO P x<0, (12)  profile and tend to soften [6].
Ry, : x=0.

- . . . 1. Limiting case a—0
The initial densitied; and R, are fractions of the maximal g

density: So far, the solutions of thé-TASEP current on Euler
scale have been considered for firateln order to apply the
- = solutions to a system of hard rods, the lirait- 0 is carried
K\ out in the following. For volume particle densities smaller
than the maximum(p<1/\), one expects stability of any
initial profile in accordance to Ed5). However, it still re-
Ro= PR ki ks € R. (13 mains an open question how an initial profile of partly maxi-
R mal density evolves. The specificatioks=1 andkg=1 are
The evolution of initial profiles which have a discontinuity therefore listed separately in the following.
are of special interest because they determine the possibility
of the formation of stable shocks in the system. One there- 2. Case ALo<Ry)
fore demands # kg. Solutions of problem(11) with the ; ;
initial condition (12) are so-called weak solutions which are any(/l)p'r:oc:‘irlle_oi,th%;e& igr\nékLél;sz;;hgefjf E(Zdz)at any point of
piecewise smooth and which obey Ed1) only locally. ' '
Next, take a look at some general properties(of. Tak- (1
ing into account the physical conditian<1/\ for any so- l"ﬂ)f W Lk & tki kal)- (18)
lution of problem(11), f proves to be a convex function
[f'(u)<0]. The convexity off implies that the unique piece- Thus the discontinuity is moving with the velocitgpoc=1.

Lo

wise smooth solution of Eq$11) and(12) is given by[14] (i) ForLo<Rp=1/\ (k_>kg=1) the slope of the charac-
( teristics of the PDHE11) starting atx>0 for t=0 approaches
Ly : x< wt 0, which corresponds to an infinitely fast propagation of any
Lo—Ro fluctuations in the initial high-density regime toward the left.
f(Lo) - f(Ry) Lo=<Ro, As the velocity at the right-hand side of the shock position,
Ro X> Wt Uright» tends to minus infinity, the Rankine-Hugoniot jump
u(x,t) = < 0 condition is still satisfied. Thus even in the case of maximum
Lo @ xsf(Lot density any initial profile is stable. The apparently infinitely
X fast spreading of the discontinuity has to be interpreted on
h({) D Plot<x<=Tf(R)t [ Lo>Ry, lattice scale where any hard rod occupies infinitely many
sites which have to be covered each time the fluctuation
L R 1 x>f(Ryt moves.
(14)
3. Case 2(Ly>Ryp)
where ) o
(i) The casd g, Ry#1/\ (k_ ,kg# 1) is similar to case 1,
h=(f)™" (15  as the characteristics approach parallelism again, and the ini-
and tial profile moves with constant velocity. The construction of
h(y) is not necessary, because there is no space-time area
Xy u (16) which is not covered by the characteristics.
t y (i) For Ry<Ly=1/N (kg>k =1), the asymptotic behav-

ior of the rarefaction solution ligy. o h(y) has to be consid-
ered for the space-time wedge Joy f'(1/N)=lim, g
—-NMa=-wo<y<1=lim,_f'(1/kgh). Expandingh(y,a) in

are obtained from inverting the first derivative foand only
admitting types of solutions wheifé(u)=y=x/t as

hy) 1 \/ 1 y-1 orders ofa yields
y = - - .
A-a (ZN-a)? (A-a[(\—ay-A\] 1
(17) 1V \y-1 ~
_ L _ h(y,a) == - #m 32 +0(@%?). (19
The evolution of the system depends on the initial condi- A N \

tions: An initial discontinuity evolves as a stable shock for
Lo<Rg, while for Lo> R, it dissolves in time according to a
rarefaction wave solution. From a microscopic viewpoint _ 1

this means that for the former case fluctuations which arise L'E”'Oh(y'a) =N (20

near the discontinuity are driven towards it according to the

Rankine-Hugoniot jump condition for shock stabilitg4], = This means that the rarefaction wave solution approaches a
Vleft™ Ushock™ Urights fOT the local velocities around the dis- solution containing a sharp jump in the limit and that the

Thush approaches a constant function in the limit O:
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discontinuity remains stable in this case as wethmpare move along the lattice via next-neighbor hopping with rates
Fig. 4). pw, to the left andqw, to the right, wherew, defines the
Summing this up, the predicted result—i.e., a linear cur-occupation number dependence of the corresponding hop-
rent in the hard rod limit—has been confirmed for the case oping rate andp—q determines the overall hopping asymme-
profiles of less than maximal density and its validity couldtry. For the case of constant rateg= w, it has been de-
also be enlarged to the case of piecewise maximal initiakcribed in [6] how to construct a one-to-one mapping

density profiles. between ZRP and-ASEP explicitly. The basic idea is to
replace ZRP sites by-ASEP patrticles and ZRP particles by

tended particles and; of the ZRP particles are related as
A long-range interaction is introduced in the following as follows:
a new feature in the framework of the discrétdSEP. It is
shown how a generalized form of tiieASEP with headway- o= 1 (21)
dependent hopping rates arises naturally from a mapping be- ¢+’
mgsgsgéggsls,g) FEEOSCE%SIGAS g;:jd arocdergzg \;:vli?r? Sl O%fg%gg;: "Where the discrete coordinates of the two systems transform

interaction is constructed as the continuum hard rod limit of“ke

those processes. i-1
k= > c/(t) ] +ie. (22)

A. €-ASEP with headway-dependent rates and zero-range i'=0

processes Application of transformationg21) and (22) to ZRP with
Like the €-ASEP, a zero-range process describes the stoeccupation-number-dependent rai@g yields a system of

chastic hopping of particles on a lattice. However there ar@xtended particles with exclusion interaction and headway-
important differences in its microscopic definition: First, the dependent hopping rates.
particles have zero interaction range; i.e., there is no restric-
tion of the number of particles which may be located at the
same lattice site. Second, the hopping events in general can
take place between any two siteandi’ of the ZRP lattice
and depend on the occupation numbers of those sites. In the The basic properties of the ZRP shall be shortly summa-
following, a ZRP will be considered where the particlesrized in this section. The stationary state of a zero-range

B. Zero-range process: Stationary state and hydrodynamic
equation

P q
YYYy —_— P q
ZRP ASEP ~ N
;x l G-1) (/] G+ (G+2) G+3)
J-1 j j+1

FIG. 5. Concept of the mapping between ZRP drASEP: ZRP lattice sites are turned into particles, ZRP particles are replaced by
holes; the stochastic hopping ragesndq are interchanged.

026122-5



G. SCHONHERR PHYSICAL REVIEW E1, 026122(2005

process on a lattice dfl sites,j=1,...,N, with ratesw, op + aBa [ pv(p)] +a’Sow(p) =0, (30)
which depend only on the occupatiog(j) of the site of
departure, is known to factorize into a product mea$li&  where the velocity term(p(x)) =z(c(p(x))) is identical to the

* _ transformed expression of the ZRP fugacity. The hard rod
P 1 2),...,7(N)) =f(5n(1)f(5n(2)---f(n(N
(L), 7(2), -0 (N = F (DT (n(2))- A ((N)), limit of Eq. (30) in terms of the volume particle densify
(23 =p/a under Eulerian scaling is calculated @®mpare Sec.
where 1 B)
pnzn = 1
f(n)=—"—, n=0,1,2,.., (24) ap = — Ba[pz(c(ap))], (31
EKZO pn
_ where
with
~ - 1/1
2=, foon, (25) c(p) =c(@p) = _{ =~} ).
n=1 p
noy The form of the current-density relation for the hard rods is
p=11 =, po=1, (26) therefore completely determined by the fugacity-density re-
m=1 @m lation (28) of the corresponding zero range process—i.e., by

the choice of the form of the microscopic ZRP hopping rates

n-

denote the single-site probabilities for occupancynbgar-
ticles and are represented by power series in the fugacity
Introducing a nonequilibrium analog of the partition func-

tion D. Current-density relation: Determining the stochastic rates
* . Having once established E(31), the rates of the ZRP
Z=2 p2, (27)  which determine the basic relatioig7) and (28) may be
n=0 manipulated such that the corresponding hard rod gas shows
the ZRP densitye can be deduced from the fugacityas a certain type of coarse-grained current-density relation. A

hard rod gas exhibiting hydrodynamic phenomena similar to
the ones of th&-ASEP—for instance, stable shocks—would
be of much interest. Therefore one seeks to achieve a
. ) ) {-ASEP-type nonlinear current-density relation from Eq.
In the HD limit, the fugacity and the density become smooth(31) as a transformation from a zero-range process with ap-

functions of a continuous space coordingtelhe hydrody- [gomiate'y adapted stochastic hopping rates. For this pur-

d
=z—InZ. 2
c zdzn (28)

namic equation for the density evolution of the ZRP, derived,co the ZRP rates. must induce an interaction taking
from the master equation of the stochastic process, takes t acé onmacroscopic&istances between any two rods. A

form [6] convex current off-ASEP type can only be obtained for
Jcly,t) = aBaz(y,t) + aSo,z(y,t) + O@@).  (29) rates that increase with the distance of the particles which in
turn is proportional to the number of free lattice sitesn
Calculating Eq(28) for a certain choice of rates, yields a  front of a particle(i.e., the rates decrease with the particle
hydrodynamic equation in terms of the ZRP denstty,t). density.
) _ ) The most simple choice of nonconstant rates would be the
C. Construction of a continuum hard rod gas with long-range  gne wherew, increases linearly im or, if scaling is already
interaction taken care of, linearly ima Calculation of the fugacity
As outlined above, a class of ZRP with occupation-z(c(ap))=ac(ap)=1/p—1/\, however, shows that the result-
number-dependent rates through a one-to-one mapping ifRg currentj =pz is also linearand decreasingn p. Though
duces a class of exclusion processes where the hopping ratedes of higher order in—for instance w,=ar—lead to a
of the involved particles are a function of their headway.nonlinear current, such a current is concave and has a pole at
This mapping is carried out explicitly in the Appendix. Its p=0. Figure 6 shows how the qualitative properties of the
implications for the investigation of continuum systems be-\-rod current depend on the choice of the ZRP rates as func-
come evident in the present section where a hard rod gaéons ofn.
with long-range interaction is yielded as the continuum hard The desired current—i.e., a current which resembles the
rod analogue of a ZRP with occupation-number-dependent-ASEP current also in the limif —«—should increase
rates. Applying substitutions of densities and space coordiwith the density for low system densities and it should de-
nates arising from Eqg21) and (22) to Eq. (29) yields the crease withp for high densities. Therefore rates are neces-
hydrodynamic equation for extended particles with exclusiorsary that are nearly constant for big macroscopic distances
interaction and headway-dependent hopping rates of the geand nearly linear inn for small macroscopic distances
eral form[compare the Appendix, E4A2)] =na. A possible choice is
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_ V. CONTINUUM GASES AND THEIR LATTICE
o) 3 COUNTERPARTS

After a so far mainly formal derivation, a rather phenom-
enological approach to the comparison of discrete and con-
4 . - tinuum systems is taken in the following. Results from the

o) ; S i P preceding sections are reviewed focusing on their physical
meaning as well as their practical significance for future cal-
culations of similar systems.

—
4 . _ - A. Types of interaction: ¢-ASEP and hard rod gas
i . . .
A The coarse-grained behavior of the continuum hard rod

o _ ~ system with long-range interaction corresponds to the one of
~_FIG. 6. Qualitative dependence of the current-density relationy |attice model of extended particles with exclusion interac-
i(p) of the continuum hard rod gas in its HD limit on the form of (o The current-density relations in the continuum limit of
the corresponding microscopic ZRP hopping rats). both systems are formally equivalent. In the following, it is

illustrated why those two systems macroscopically evolve in

_r _ na the same fashion while they are governed by two different

T f1 natl (32 kinds of microscopic interactions. The procedure of coarse-

graining during the HD limit is reviewed in greater depth.

The derivation ofc(z) for such rate€32) is straightforward
according to the relations given in Sec. IV B. The power 1. Long-range interaction

series inz constituting the partition function is evaluated as st of all. it shall be demonstrated that a long-range type

= [ L of interaction is necessary for a hard rod system with mac-
A atl _ _ (1 _p—(atDia roscopic interactions. The limit of vanishing lattice constant
z=2, [H ( m 1)]Zn_ 1-2) ' a—0 is compared for thé-ASEP and the hard rod gas.

(i) When performing the HD limit of thé-ASEP, the real
The fugacityz may be given explicitly as a function af. distance between two particles shrinks but the number of
From lattice sites between them remains constant. An interaction

between two particles takes place, whenever a hopping at-
d a+l z tempt is rejected because neighboring sites are occupied.
c= zd—zln(Z) T4 1-2 Due to the finite distance, two particles which are separated
only by holes in between, in general, interact within a finite
follows time.
(i) Letting a approach zero for the hard rod gas, both the
ac length of the rods and the interparticle distances are rescaled
at+l = a+l+ac like 1{a. T.he real distance between two rods remains con-
—+c stant in this case, but the number of vacant lattice sites in
a between two rods approaches infinity.

During the second coarse graining, the real distance be-
comes comparably small again, but still contains infinitely
many sites of the original lattice. The dynamics which is
only defined on the microscopic lattice scale therefore cannot

n=0 n! m=1

z(c) =

In the limit a— O and for constant volume patrticle density
the ZRP densityc diverges like 14. The fugacity in this
limit approaches

1/1 possibly lead to any interaction. Two rods would need an

a—(: - )\) _ infinite amount of time to meet and the sheer exclusion in-

limz(c(7)) = lim a\p — 1-Np teractiop does not play any role for_ the evolution o_f the sys-
a0 a0 1 1-A-1p tem. If interaction effects are desired, onmaustequip the

a+1l +a5<7; - K) rods with some kind of long-range interaction which makes

them feel the presence of each other even when on lattice
The hydrodynamic equatiof81) applied to interacting hard Scale at an infinite distance. The hopping rat88) have

rods under Eulerian scaling transforms into been scaled to a form such that they are functions of the
macroscopic distance instead of the diverging number of
~ (1 -\p free lattice sites.
o= o8| LA (39
1-(N-1p

2. Specific form of interaction: ZRP ratego, =r/(r+1)

Remarkably, one recovers exactly the same type of current- Having understood the scales of interaction, its specific
density relation as derived for tHeASEP before taking the form shall be investigated. The long-range interaction of the
limit € —c0 of macroscopic rods of rescaled length € a. hard rod gas is determined completely by the stochastic hop-
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ping rates of the corresponding zero-range process and thignes and¢ times, respectively, the length unit fe=1 or
discrete exclusion process. In the following it is explained¢ = 1. In the case of the rods their real lengths essential,
why a certain coarse-grained hard rod current, in particular and the current is a function of the volume density. The
{-ASEP-type current, must arise as a consequence of thosength parametef of the €-ASEP particles instead indicates
rates. the number of covered sites; therefore, the formally equiva-

Consider a ZRP with a general form of hopping rat€s) lent current is a function of the density per lattice site.
which depend on the interparticle distanceof the corre-

sponding hard rod system like B. Lattice simulations of continuum gases
r MC simulations are a standard numerical tool for predic-
o(r) =Ty (34 tions of the evolution of discrete models. In the previous

section, the correspondence of a continuous to a discrete sys-
Those rates result in a current-density relation of the form tem (the (-ASEP) has been established. This means that one
may now employ such numerical approaches as exact simu-
_ p(1-X\p) (35) lations of a continuum system. Figures 7 and 8 result from
T1- AN=X)p Monte Carlo simulations of the 3-TASEP as a chosen speci-
fication (=3, B=1, S=0) of the {-ASEP. They illustrate the

The choice of the parameteiimplicitly fixes a length scale, temporal evolution of a hard rod gas on a periodic lattice
determining the curvature of the functiesir). The probabil-  with the current-density relatio(85),

ity for a rod to leave its original position is determined by _

comparing its headway to the lengthr +x. Choosingx=\ i) = p(1-3p)

the ratior/(r+X)=n/(n+l) on average measures the local 1-2% '

hole density of the lattice system. While a particle on the i o i
discrete lattice only hops if it encounters a hole in front dueStarting with initial profiles of the form
to exclusion, this extra hopping condition is artificially im-

posed on the hopping rates of the rods. The resulting mass Pe(x,t=0) =
current forx=\ is symmetric and formally identical to the

ASEP current:

1(0.8): x< 2L,

37
0: x= 2L 37

A general form of this PDE has been solved analytically in
jmass= \j =391 - 7). (36) Sec. Il C. The numerical approach presented here involves
MC simulations performed for an ensemble of 1000 lattices
Choosingx# \, Eq. (34) yields a nonsymmetric current- of length L=20001500 each. Figure 8 depicts different
density relation, especially for=1 the {-ASEP relation. stages of the MC evolution of such a discrete system where
This means that the length scale fixedxoy the continu-  the initial profile (37) is realized by a configuration with
ous system takes over the role of the lattice spacing in theccupation of sites 0-1499 by 500 3-mers and vacant sites
discrete model. The rods are equally long as this unit in thet500-1999. As periodic boundary conditions are applied, the
casex=\ for the rod system and the cade=1 for the Iinitial profile att=0 is astep with two sharp discontinuities
¢-ASEP, resulting in a symmetric current. They measure at 0 and 1499. Fot>0, hopping takes place according to
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FIG. 8. Density evolution of théf =3)-TASEP: The coverage density is plotted on jhaxis against the lattice site numbers 0—1999 of
a periodic lattice on th& axis. Snapshots from the simulation data are depicted for every 160 MC(stp$60,320,48D The dashed line
indicates the theoretical rarefaction wave solution of the density profile. For better graphical illustration it is plotted over a bigger range than
the one where it is a valid solution. In its definition range it perfectly matches the simulation data.

¢-TASEP dynamicga particle hops to the right with rate 1 dict the behavior of the discrete(T)ASEP, also describe a
provided the lattice site is emptyOne observes that the left continuum system of long-range interacting hard rods. The
discontinuity remains stable until it is reached by the parexistence of stable shock solutions for this hard rod gas is
ticles coming from the breakup of the right edge of the stepdemonstrated in the simulation pictures.

At t=480 the equilibration process towards the stationary
uniform density profile’ﬁE% has begun. Snapshots were
taken at four times in the simulation, every 160 MC steps
starting at=0 after the lattice initialization, in order to show  The construction of continuum hard rod gases has been
the softening out of the right edge of the initial step. In gchieved by appropriate scaling of and performing limits on
contrast to the TASER(=1), there is ndinear decrease in giscrete lattice models. For the example of (RASEP as an

the density profile but it _takes thg form which was alreadyayclusion procesémodel A) and a generalized process with
proposed by the rarefaction solution of the POE) in Sec.  4qgitional long-range interactioimodel B), two steps were

Il C. For a.be.“ef comparison .Of S'mu'a“of‘ data and theo'performed: First, in the hard rod limit the length of the ex-
retical predictions, the rarefaction curV&?) is overplotted oo particles in discrete space was rescaled to be infinite
as a daghgd "”? for timets>0 in Fig. 8'. In its region of on lattice scale, but to stay finite on a macroscopic scale of
validity, linking high- and low-density regime, it matches the continuous space. Second, the hydrodynamic limit of those

MC data very well. The remaining fluctuations are due to th ; o
discreteness of the MC system and the small ensemble nu ard rod_s was gained by ar_10ther_ coarse-graining procedure.
Ifne continuous models achieved in this way do not resemble

ber chosen for the averaging process. Figure 7 is a snhapsh . : :
att=320 from the MC evolution of a similar but nonmaxi- (e hydrodynamic properties of the discrete models from

mal initial step profile under 3-TASEP dynamics as a stabléVhere they arise. More remarkably instead, the hydrody-
shock. The left discontinuity moves as a stable shock witflamic hard rod limit of modeB yields exactly the same
constant velocity towards the right. Except for stochasticcoarse-grained current-density relation as the hydrodynamic
fluctuations, the shock is absolutely sharp. limit of the discrete modeA. All basic physical properties of
The simulations performed match the expected results andhe £-ASEP (hydrodynamic behavior and phase transitions
confirm theory. The MC simulations, originally a tool to pre- [6,10,11,17) are transferable to a continuum system of hard

VI. SUMMARY AND CONCLUSIONS
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rods with a certain long-range interaction. The methodology ) px  alpy? ) 3
behind this correspondence may be exploited for many other ¢(y,t) =aB(p9)d,G(p)| 3+ 5 5 |*@ S2p°3,G(p)
types of(lattice) models and interparticle interactions. Given (p 2 P

an empirical current-density relation of some real physical 2 Px 2 2

system, the established formalism allows for the construction TP a”PG(p)][?} ~a%3,G(p)
of a lattice model which exactly reflects the hydrodynamic 5
properties of the continuum system. This opens up new pos- % [_ Pxx | ?’(Lx)] .
sibilities for the investigation of continuum systems with 4 °

p p
analytical and in particular numerical tools. Repeating all three steps for the left-hand side,
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APPENDIX: GENERALIZED MAPPING BETWEEN ZRP — =aBay,t) + a289yz(y,t) _ —B&yZ(y,t),
AND EXCLUSION PROCESSES ot 2

Some key steps of the calculation of the HD equation of eone obtains the generalized hydrodynamic equation for par-
generalizedl-ASEP with any type of interaction which can ticles with exclusion interaction and headway-dependent
be mapped onto a ZRP, as described in Sec. IV B, are givetopping rates:

One starts with Eq(29). In order to rewrite its right-hand 5 2
side in terms ofp, one first carries out the outer derivatives dip +aB[G(p) + pd,G(p)Ipy+ 8 3,,G(p) (px) "+ 9,G(p) pd

of z(c(y,t)), yielding =0.
9z +*z Thus
ac(y,t) =aB—a.c(y,t) + azs{ —[ac(y,)]? '
t ac” ac a0+ aBAG(p)] + #50,G(p) =0 (A2)
+ g—z[ayyc(y,t)]] . (A1) and
j(p) = aBpG(p) + a’SG(p). (A3)

Second, one introduces a functi@ip) which is substituted

for z(c)=z(c(p)), leading to The above formally introduced functid®(p) has the physi-

cal interpretation of the average particle velocity for a nor-
ac(y,t) = - aB(p?)a,G(p) dyc(y,t) + a°S2p°3,G(p) malized hopping asymmetfp—q)=1, as in lowest order on

+p4ﬁppG(p)][&yc(y,t)]2— ZszapG(p)[ayyc(y,t)], the Euler scale the following relation holds true:

and third, replaces the derivatives dfy,t) by explicit ex- v(p) = 9 =G(p).
pressions irp(x,t), resulting in ap
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