364 research outputs found

    Laboratory measurements of electrostatic solitary structures generated by electron beam injection

    Full text link
    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λDe\lambda_{De}) enabled the measurement of positive potential pulses with half-widths 4 to 25λDe\lambda_{De} and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.Comment: 5 pages, 4 figures http://link.aps.org/doi/10.1103/PhysRevLett.105.11500

    Microscopy with ultraviolet surface excitation for rapid slide-free histology.

    Get PDF
    Histologic examination of tissues is central to the diagnosis and management of neoplasms and many other diseases, and is a foundational technique for preclinical and basic research. However, commonly used bright-field microscopy requires prior preparation of micrometre-thick tissue sections mounted on glass slides, a process that can require hours or days, that contributes to cost, and that delays access to critical information. Here, we introduce a simple, non-destructive slide-free technique that within minutes provides high-resolution diagnostic histological images resembling those obtained from conventional haematoxylin-and-eosin-histology. The approach, which we named microscopy with ultraviolet surface excitation (MUSE), can also generate shape and colour-contrast information. MUSE relies on ~280-nm ultraviolet light to restrict the excitation of conventional fluorescent stains to tissue surfaces, and it has no significant effects on downstream molecular assays (including fluorescence in situ hybridization and RNA-seq). MUSE promises to improve the speed and efficiency of patient care in both state-of-the-art and low-resource settings, and to provide opportunities for rapid histology in research

    Understanding Mid-Latitude Space Weather: Storm Impacts Observed at BLO on 31 March 2001

    Get PDF
    On 30 March 2001 in the late evening an auroral display was observed over the United States of America. The Bear Lake Observatory (BLO) magnetometer in Utah measured changes of 550 nT in less than 30 min. During the same period, BLO ionosonde measurements showed deep high-frequency radio wave absorption up to 7 MHz. BLO\u27s GPS single-frequency receiver experienced geolocation errors of 20 m for over 3 hours. These storm signatures were also accompanied by L-band scintillation effects which approached an S4 value of 0.2, which is large for midlatitudes. Although such measurements have been have been made at midlatitude locations for many decades, our knowledge of the processes and couplings involved in such events remains incomplete and, at best, qualitative. The interpretation of key ionospheric parameters\u27 storm response is discussed in the context of present-day auroral and geospace electrodynamics understanding. We find that at BLO (L = 2.38) the available data raise more questions and can provide almost no answers without observational inputs from other locations. One solution to this impasse is to field a ground-based sensor network to resolve the spatial scales of the geospace electrodynamics. On the basis of the instrument complement at BLO, we argue for a contiguous U.S. deployment of modest magnetic/optical/RF observatories to observe the next solar maximum period\u27s geomagnetic storms and to use these data to explore the physical processes and couplings on space weather effective scales in assimilative models in conjunction with space-based observations

    Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis

    Get PDF
    Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination

    Binding of Elementary Bodies by the Opportunistic Fungal Pathogen Candida albicansor Soluble β-Glucan, Laminarin, Inhibits Chlamydia Trachomatisinfectivity

    Get PDF
    Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0-120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or β-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of β-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors

    Sounding rocket study of two sequential auroral poleward boundary intensifications

    Get PDF
    The Cascades-2 sounding rocket was launched on 20 March 2009 at 11:04:00 UT from the Poker Flat Research Range in Alaska, and flew across a series of poleward boundary intensifications (PBIs). The rocket initially crosses a diffuse arc, then crosses the equatorward extent of one PBI (a streamer), and finally crosses the initiation of a separate PBI before entering the polar cap. Each of the crossings have fundamentally different in situ electron energy and pitch angle structure, and different ground optics images of visible aurora. It is found that the diffuse arc has a quasi-static acceleration mechanism, and the intensification at the poleward boundary has an Alfvénic acceleration mechanism. The streamer shows characteristics of both types of acceleration. PFISR data provide ionospheric context for the rocket observations. Three THEMIS satellites in close conjunction with the rocket foot point show earthward flows and slight dipolarizations in the magnetotail associated with the in situ observations of PBI activity. An important goal of the Cascades-2 study is to bring together the different observational communities (rocket, ground cameras, ground radar, satellite) with the same case study. The Cascades-2 experiment is the first sounding rocket observation of a PBI sequence, enabling a detailed investigation of the electron signatures and optical aurora associated with various stages of a PBI sequence as it evolves from an Alfvénic to a more quasi-static structure

    Role of isospin dependent mean field in pion production in heavy ion reactions

    Get PDF
    The importance of a isospin dependent nuclear mean field (IDMF) in regard to the pion production mechanism is studied for the reaction Au+AuAu+Au at 1 GeV/nucleon using the Quantum Molecular Dynamics (QMD) model. In particular, the effect of the IDMF on pion spectra and the charged pion ratio are analyzed. It is found that the inclusion of a IDMF considerably suppresses the low−pt-p_t pions, thus, leading to a better agreement with the data on pion spectra. Moreover, the rapidity distribution of the charged pion ratio appears to be sensitive to the isospin dependence of the nuclear mean field.Comment: 16 pages, using RevTex, 6 PS-Figure

    Structure and dynamics of the nightside poleward boundary: Sounding rocket and ground-based observations of auroral electron precipitation in a rayed curtain

    Get PDF
    The Cascades2 auroral sounding rocket provides a case study for comparing multipoint in situ ionospheric observations of a nightside auroral poleward boundary intensification with ground-based optical observations of the same event. Cascades2 was launched northward from Poker Flat Alaska on 20 March 2009 at 11:04 UT. The 13 min flight reached an apogee of 564 km over the northern coast of Alaska. The experiment included a five-payload array of in situ instrumentation, ground cameras at three different points under the trajectory, multiple ground magnetometers, the Poker Flat Incoherent Scatter Radar (PFISR) radar, and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft in the magnetotail. The rays of the poleward boundary intensification (PBI) curtain have along-arc motions of 8.5 km/s and along-arc spacings of 16 km. Modulated maximum energy envelopes and energy fluxes of the associated electron precipitation correspond to this spatial structure of the visible rays. The electron precipitation is additionally modulated at a higher frequency, and velocity dispersion analysis of these 8 Hz signatures implies Alfvénic wave-particle acceleration of an ambient ionospheric electron source occurring a few hundred km above the observation point. These observations parameterize the curtain of Alfvénic activity above the PBI event, both in the dispersive ionosphere and in the magnetotail reconnection region. The along-arc variations in brightness correspond to variations in precipitating electron energy flux interpreted as an along-arc modulation of the maximum energy of the Alfvénic wave-particle acceleration process; this is a new interpretation of the formation of rayed structures in auroral curtains. We consider the various possible magnetospheric and ionospheric drivers for the control of the observed along-arc structuring and motions
    • …
    corecore