1,060 research outputs found

    Radial Band Structure of Electrons in Liquid Metals

    Full text link
    The electronic band structure of a liquid metal was investigated by measuring precisely the evolution of angle-resolved photoelectron spectra during the melting of a Pb monolayer on a Si(111) surface. We found that the liquid monolayer exhibits a free-electron-like band and it undergoes a coherent radial scattering, imposed by the radial correlation of constituent atoms, to form a characteristic secondary hole band. This unique double radial bands and their gradual evolution during melting can be quantitatively reproduced, including detailed spectral intensity profiles, with our radial scattering model based on a theoretical prediction of 1962. Our result establishes the radial band structure as a key concept for describing the nature of electrons in strongly disordered states of matter.Comment: 4 pages, 4 figures, accepted to Physical Review Letter

    Emergence of Two-Dimensional Massless Dirac Fermions, Chiral Pseudospins, and Berry's Phase in Potassium Doped Few-Layer Black Phosphorus

    Full text link
    Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry's phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications

    Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Get PDF
    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ~0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their moving along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by spacetime inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals

    Study of a Vocal Feature Selection Method and Vocal Properties for Discriminating Four Constitution Types

    Get PDF
    The voice has been used to classify the four constitution types, and to recognize a subject's health condition by extracting meaningful physical quantities, in traditional Korean medicine. In this paper, we propose a method of selecting the reliable variables from various voice features, such as frequency derivative features, frequency band ratios, and intensity, from vowels and a sentence. Further, we suggest a process to extract independent variables by eliminating explanatory variables and reducing their correlation and remove outlying data to enable reliable discriminant analysis. Moreover, the suitable division of data for analysis, according to the gender and age of subjects, is discussed. Finally, the vocal features are applied to a discriminant analysis to classify each constitution type. This method of voice classification can be widely used in the u-Healthcare system of personalized medicine and for improving diagnostic accuracy

    Direct observation of the spin polarization in Au atomic wires on Si(553)

    Get PDF
    The spin-resolved electronic band structure of Au-induced metallic atomic wires on a vicinal silicon surface, Si(553), was investigated using spin-and angle-resolved photoelectron spectroscopy. We directly measured the spin polarization of three partially filled one-dimensional metallic bands, a one-third-filled band, and the doublet of nearly half-filled bands. For the half-filled doublet, the strong apparent spin polarization was observed near the Fermi energy with a minor out-of-plane spin component. This observation is consistent with the Rashba-type spin-orbit splitting and with a recent experiment on a similar doublet of Si(557)-Au. In contrast, the one-third-filled band does not show a substantial spin polarization within the experimental accuracy, indicating a much smaller spin splitting, if any. These results are discussed for the origin of the partially filled bands and for the intriguing broken-symmetry ground state observed at low temperature.X11116sciescopu

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Small scale rotational disorder observed in epitaxial graphene on SiC(0001)

    Full text link
    Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder (±\sim\pm 0.15^{\circ}) of graphene domains in graphene grown on SiC(0001) samples. In addition to the direct benefit in the understanding of graphene's electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.Comment: 5 pages, 4 figure

    Journal of the Korean Society of Marine Engineering 672 / 한국마린엔지니어링학회지 제33권 제5호

    Get PDF
    Abstract:Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process. Key words:Acousti
    corecore