8 research outputs found

    Effective Caspase Inhibition Blocks Neutrophil Apoptosis and Reveals Mcl-1 as Both a Regulator and a Target of Neutrophil Caspase Activation

    Get PDF
    Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils

    Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD

    No full text
    Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-kappa B (NF-kappa B). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-kappa B and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD

    Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD

    No full text
    corecore