12 research outputs found

    Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina

    Get PDF
    INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.Funding provided by Australian Research Council Centres of Excellence Program Grant (CE0561903)

    The role of 3D printing in anatomy education and surgical training: A narrative review

    No full text
    Recent expansions in the development and availability of three-dimensional printing (3Dp) have led to the uptake of this valuable and effective technology within the modern context of medical education. It is proposed that 3Dp is entirely appropriate for the creation of anatomical models for purposes of teaching and training due to the ability of this technology to produce accurate 3D physical representations based on a processed data set acquired from sources including magnetic resonance imaging (MRI) and computed tomography (CT). When investigating the currently available educational research with respect to 3Dp, it is important that the best evidence supporting the practical and theoretical benefits of this technology in teaching and training can be identified, while any obstacles to the effective implementation of 3Dp can also be determined. Here, literature describing recent primary research with respect to the capability and utility of 3Dp in anatomy and surgery have been explored in a narrative review. The impact on resources of implementing this technology within medical education have also been investigated. In order to emphasise wider applications in medicine, the role of 3Dp in medical practice and research have also been examined. To identify recent literature appropriate for this review published up to March 2017, suitable search terms were determined and applied using PubMed and results were judged against an established checklist. The research identified was then allocated with respect to the agreed topic areas of anatomy education, surgical training, medical usage and medical research. A student partnership approach was utilised for this review and the focus of the work was driven by undergraduate students in collaboration with anatomy and medical educators. Preliminary findings from this narrative review support the implementation of 3Dp in anatomy education and surgical training as a supplement to traditional learning approaches

    The role of 3D printing in anatomy education and surgical training: A narrative review

    No full text
    Recent expansions in the development and availability of three-dimensional printing (3Dp) have led to the uptake of this valuable and effective technology within the modern context of medical education. It is proposed that 3Dp is entirely appropriate for the creation of anatomical models for purposes of teaching and training due to the ability of this technology to produce accurate 3D physical representations based on a processed data set acquired from sources including magnetic resonance imaging (MRI) and computed tomography (CT). When investigating the currently available educational research with respect to 3Dp, it is important that the best evidence supporting the practical and theoretical benefits of this technology in teaching and training can be identified, while any obstacles to the effective implementation of 3Dp can also be determined. Here, literature describing recent primary research with respect to the capability and utility of 3Dp in anatomy and surgery have been explored in a narrative review. The impact on resources of implementing this technology within medical education have also been investigated. In order to emphasise wider applications in medicine, the role of 3Dp in medical practice and research have also been examined. To identify recent literature appropriate for this review published up to March 2017, suitable search terms were determined and applied using PubMed and results were judged against an established checklist. The research identified was then allocated with respect to the agreed topic areas of anatomy education, surgical training, medical usage and medical research. A student partnership approach was utilised for this review and the focus of the work was driven by undergraduate students in collaboration with anatomy and medical educators. Preliminary findings from this narrative review support the implementation of 3Dp in anatomy education and surgical training as a supplement to traditional learning approaches
    corecore