538 research outputs found

    Simulation of propofol anaesthesia for intracranial decompression using brain hypothermia treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although propofol is commonly used for general anaesthesia of normothermic patients in clinical practice, little information is available in the literature regarding the use of propofol anaesthesia for intracranial decompression using brain hypothermia treatment. A novel propofol anaesthesia scheme is proposed that should promote such clinical application and improve understanding of the principles of using propofol anaesthesia for hypothermic intracranial decompression.</p> <p>Methods</p> <p>Theoretical analysis was carried out using a previously-developed integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems. Propofol kinetics is described using a framework similar to that of this model and combined with the thermoregulation subsystem through the pharmacodynamic relationship between the blood propofol concentration and the thermoregulatory threshold. A propofol anaesthesia scheme for hypothermic intracranial decompression was simulated using the integrative model.</p> <p>Results</p> <p>Compared to the empirical anaesthesia scheme, the proposed anaesthesia scheme can reduce the required propofol dosage by more than 18%.</p> <p>Conclusion</p> <p>The integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems is effective in analyzing the use of propofol anaesthesia for hypothermic intracranial decompression. This propofol infusion scheme appears to be more appropriate for clinical application than the empirical one.</p

    Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory

    Get PDF
    The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained

    Brain herniation in a patient with apparently normal intracranial pressure: a case report

    Get PDF
    Introduction Intracranial pressure monitoring is commonly implemented in patients with neurologic injury and at high risk of developing intracranial hypertension, to detect changes in intracranial pressure in a timely manner. This enables early and potentially life-saving treatment of intracranial hypertension. Case presentation An intraparenchymal pressure probe was placed in the hemisphere contralateral to a large basal ganglia hemorrhage in a 75-year-old Caucasian man who was mechanically ventilated and sedated because of depressed consciousness. Intracranial pressures were continuously recorded and never exceeded 17 mmHg. After sedation had been stopped, our patient showed clinical signs of transtentorial brain herniation, despite apparently normal intracranial pressures (less than 10 mmHg). Computed tomography revealed that the size of the intracerebral hematoma had increased together with significant unilateral brain edema and transtentorial herniation. The contralateral hemisphere where the intraparenchymal pressure probe was placed appeared normal. Our patient underwent emergency decompressive craniotomy and was tracheotomized early, but did not completely recover. Conclusions Intraparenchymal pressure probes placed in the hemisphere contralateral to an intracerebral hematoma may dramatically underestimate intracranial pressure despite apparently normal values, even in the case of transtentorial brain herniation

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection

    Cell-based expression cloning for identification of polypeptides that hypersensitize mammalian cells to mitotic arrest

    Get PDF
    Microtubule inhibitors such as Vinblastine and Paclitaxel are chemotherapy agents that activate the mitotic spindle checkpoint, arresting cells in mitosis and leading to cell death. The pathways that connect mitotic arrest to cell death are not well characterized. We developed a mammalian cell-based cDNA cloning method to isolate proteins and protein fragments whose expression inhibits colony formation in the presence of microtubule inhibitors. Understanding how these proteins impact cellular responses to microtubule drugs will lead to better understanding of the biochemical pathways connecting mitotic arrest and cell death in mammalian cells and may provide novel targets that can enhance microtubule inhibitor-mediated chemotherapy

    Nanoelectropulse-driven membrane perturbation and small molecule permeabilization

    Get PDF
    BACKGROUND: Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization. RESULTS: In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses). Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X(7 )receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. CONCLUSION: Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose responses of cells to unipolar and bipolar pulses ranging from 3 ns to 30 ns duration support the hypothesis that a field-driven charging of the membrane dielectric causes the formation of pores on a nanosecond time scale, and that the anionic phospholipid PS migrates electrophoretically along the wall of these pores to the external face of the membrane

    An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma

    Get PDF
    Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55–60%) and calcium-dependent (40–45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event

    Women's preference for cesarean delivery and differences between Taiwanese women undergoing different modes of delivery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of cesarean delivery was 35% in 2007 in Taiwan. It is unclear how many of the cesarean deliveries were without medical indications. Women's preference for cesarean delivery during their course of pregnancy has rarely been studied and therefore our objectives were to examine rate of cesarean deliveries without medical indications, to explore women's preference for cesarean delivery as their gestation advances, and to compare background and perinatal factors among women who underwent different modes of delivery in Taiwan.</p> <p>Methods</p> <p>This prospective study applied a longitudinal design. The study participants were 473 women who received prenatal care at four hospitals in Taipei and answered structured questionnaires at 20 to 24 weeks of pregnancy, 34 to 36 weeks of pregnancy, and 5 to 7 weeks after delivery.</p> <p>Results</p> <p>Of the 151 women (31.9%) who had cesarean deliveries, 19.9% were without medical indication. Three indications: malpresentation, prior cesarean section, and dysfunctional labor together accounted for 82.6% of cesarean section with medical indications. The prevalence of maternal preference for cesarean delivery was found to be 12.5% and 17.5% during the second and third trimester, respectively. Of the women who preferred cesarean delivery during the second trimester, 93.2% eventually had a cesarean delivery. Women who were older, with older spouses, and who had health problems before or during pregnancy were more likely to have cesarean deliveries.</p> <p>Conclusions</p> <p>About 20% of cesarean deliveries were without medical indications. Women's preference for cesarean delivery during the second trimester predicts subsequent cesarean delivery. Counseling regarding mode of delivery should be offered early in pregnancy, especially for women who are older or with older spouses, have health problems, or had a prior cesarean section.</p

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
    corecore