1,844 research outputs found

    The removal of thermally aged films of triacylglycerides by surfactant solutions

    Get PDF
    Thermal ageing of triacylglycerides (TAG) at high temperatures produces films which resist removal using aqueous surfactant solutions. We used a mass loss method to investigate the removal of thermally aged TAG films from hard surfaces using aqueous solutions of surfactants of different charge types. It was found that cationic surfactants are most effective at high pH, whereas anionics are most effective at low pH and a non-ionic surfactant is most effective at intermediate pH. We showed that the TAG film removal process occurs in several stages. In the first ‘‘lag phase’’ no TAG removal occurs; the surfactant first partitions into the thermally aged film. In the second stage, the TAG film containing surfactant was removed by solubilisation into micelles in the aqueous solution. The effects of pH and surfactant charge on the TAG removal process correlate with the effects of these variables on the extent of surfactant partitioning to the TAG film and on the maximum extent of TAG solubilisation within the micelles. Additionally, we showed how the TAG removal is enhanced by the addition of amphiphilic additives such as alcohols which act as co-surfactants. The study demonstrates that aqueous surfactant solutions provide a viable and more benign alternative to current methods for the removal of thermally aged TAG films

    KCa1.1, a calcium-activated potassium channel subunit alpha 1, is targeted by miR-17-5p and modulates cell migration in malignant pleural mesothelioma

    Get PDF
    © 2016 Lin et al. Background: Malignant pleural mesothelioma (MPM) is an aggressive, locally invasive, cancer elicited by asbestos exposure and almost invariably a fatal diagnosis. To date, we are one of the leading laboratory that compared microRNA expression profiles in MPM and normal mesothelium samples in order to identify dysregulated microRNAs with functional roles in mesothelioma. We interrogated a significant collection of MPM tumors and normal pleural samples in our biobank in search for novel therapeutic targets. Methods: Utilizing mRNA-microRNA correlations based on differential gene expression using Gene Set Enrichment Analysis (GSEA), we systematically combined publicly available gene expression datasets with our own MPM data in order to identify candidate targets for MPM therapy. Results: We identified enrichment of target binding sites for the miR-17 and miR-30 families in both MPM tumors and cell lines. RT-qPCR revealed that members of both families were significantly downregulated in MPM tumors and cell lines. Interestingly, lower expression of miR-17-5p (P = 0.022) and miR-20a-5p (P = 0.026) was clearly associated with epithelioid histology. We interrogated the predicted targets of these differentially expressed microRNA families in MPM cell lines, and identified KCa1.1, a calcium-activated potassium channel subunit alpha 1 encoded by the KCNMA1 gene, as a target of miR-17-5p. KCa1.1 was overexpressed in MPM cells compared to the (normal) mesothelial line MeT-5A, and was also upregulated in patient tumor samples compared to normal mesothelium. Transfection of MPM cells with a miR-17-5p mimic or KCNMA1-specific siRNAs reduced mRNA expression of KCa1.1 and inhibited MPM cell migration. Similarly, treatment with paxilline, a small molecule inhibitor of KCa1.1, resulted in suppression of MPM cell migration. Conclusion: These functional data implicating KCa1.1 in MPM cell migration support our integrative approach using MPM gene expression datasets to identify novel and potentially druggable targets

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease ( COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGF beta induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. Methods: We compared gene expression of the Smad pathway at different time points after stimulation with TGF beta, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. Results: Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGF beta stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGF beta stimulation. CSE hardly influenced gene expression of the TGF beta-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. Conclusion: Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused neovolcanic zones. In contrast, ultraslow spreading ridge construction significantly relies on tectonic accretion, which is characterized by thin volcanic crust, emplacement of mantle peridotite directly to the seafloor, and unique seafloor fabrics with variable segmentation patterns. While advances in remote imaging have enhanced our observational understanding of crustal accretion at all spreading rates, temporal information is required in order to quantitatively understand mid-ocean ridge construction. However, temporal information does not exist for ultraslow spreading environments. Here, we utilize U-series eruption ages to investigate crustal accretion at an ultraslow spreading ridge for the first time. Unexpectedly young eruption ages throughout the Southwest Indian ridge rift valley indicate that neovolcanic activity is not confined to the spreading axis, and that magmatic crustal accretion occurs over a wider zone than at faster spreading ridges. These observations not only suggest that crustal accretion at ultraslow spreading ridges is distinct from faster spreading ridges, but also that the magma transport mechanisms may differ as a function of spreading rate.This work was supported by the following NSF grants: NSF-OCE 0137325; NSF-OCE 060383800; and NSF-OCE 062705300

    Srv Mediated Dispersal of Streptococcal Biofilms Through SpeB Is Observed in CovRS+ Strains

    Get PDF
    Group A Streptococcus (GAS) is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1) and MGAS315 (serotype M3), both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds
    corecore