2,360 research outputs found

    The modified arterial reservoir: An update with consideration of asymptotic pressure (P∞) and zero-flow pressure (Pzf)

    Get PDF
    This article describes the modified arterial reservoir in detail. The modified arterial reservoir makes explicit the wave nature of both reservoir (Pres) and excess pressure (Pxs). The mathematical derivation and methods for estimating Pres in the absence of flow velocity data are described. There is also discussion of zero-flow pressure (Pzf), the pressure at which flow through the circulation ceases; its relationship to asymptotic pressure (P∞) estimated by the reservoir model; and the physiological interpretation of Pzf . A systematic review and meta-analysis provides evidence that Pzf differs from mean circulatory filling pressure

    Wave intensity analysis: A novel non-invasive method for determining arterial wave transmission

    Get PDF
    Wave intensity analysis is a novel technique for assessing wavelet transmission in the cardiovascular system. Using this tool, we have developed non-invasive techniques to study wave transmission in both central & peripheral arteries in man. The aim of this study was to determine the reproducibility of various haemodynamic measures in the carotid, brachial and radial arteries. 12 treated hypertensive men underwent applanation tonometry and pulsed Doppler ultrasound studies of the carotid, brachial and radial arteries on 2 occasions. Coefficients of variation for the local wave speed, cardiac compression wave intensity and main reflected wave intensity ranged between 3.7-6.6%, 8.2-11.4% and 12.5-19.6% respectively. We conclude that non-invasive methods used for wave intensity analysis are reproducible & provide additional information regarding the complex phenomenon of arterial wave transmission in man

    Mathematical model of flow through the patent ductus arteriosus

    No full text

    Feasibility of Estimation of Aortic Wave Intensity Using Non-invasive Pressure Recordings in the Absence of Flow Velocity in Man

    Get PDF
    Background: Wave intensity analysis provides valuable information on ventriculo-arterial function, hemodynamics, and energy transfer in the arterial circulation. Widespread use of wave intensity analysis is limited by the need for concurrent measurement of pressure and flow waveforms. We describe a method that can estimate wave intensity patterns using only non-invasive pressure waveforms (pWIA). Methods: Radial artery pressure and left ventricular outflow tract (LVOT) flow velocity waveforms were recorded in 12 participants in the Southall and Brent Revisited (SABRE) study. Pressure waveforms were analyzed using custom-written software to derive the excess pressure (P xs ) which was scaled to peak LVOT velocity and used to calculate wave intensity. These data were compared with wave intensity calculated using the measured LVOT flow velocity waveform. In a separate study, repeat measures of pWIA were performed on 34 individuals who attended two clinic visits at an interval of ≈1 month to assess reproducibility and reliability of the method. Results: P xs waveforms were similar in shape to aortic flow velocity waveforms and the time of peak P xs and peak aortic velocity agreed closely. Wave intensity estimated using pWIA showed acceptable agreement with estimates using LVOT velocity tracings and estimates of wave intensity were similar to values reported previously in the literature. The method showed fair to good reproducibility for most parameters. Conclusion: The P xs is a surrogate of LVOT flow velocity which, when appropriately scaled, allows estimation of aortic wave intensity with acceptable reproducibility. This may enable wider application of wave intensity analysis to large studies

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously

    Limitations of augmentation index in the assessment of wave reflection in normotensive healthy individuals

    Get PDF
    Objectives Augmentation index (AIx) is widely used as a measure of wave reflection. We compared the relationship between AIx and age, height and sex with ‘gold standard’ measures of wave reflection derived from measurements of pressure and flow to establish how well AIx measures wave reflection. Materials and Methods Measurements of carotid pressure and flow velocity were made in the carotid artery of 65 healthy normotensive individuals (age 21–78 yr; 43 male) and pulse wave analysis, wave intensity analysis and wave separation was performed; waveforms were classified into type A, B or C. AIx, the time of the first shoulder (Ts), wave reflection index (WRI) and the ratio of backward to forward pressure (Pb/Pf) were calculated. Results AIx did not correlate with log WRI or Pb/Pf. When AIx was restricted to positive values AIx and log WRI were positively correlated (r = 0.33; p = 0.04). In contrast log WRI and Pb/Pf were closely correlated (r = 0.66; p<0.001). There was no correlation between the Ts and the timing of Pb or the reflected wave identified by wave intensity analysis. Wave intensity analysis showed that the morphology of type C waveforms (negative AIx) was principally due to a forward travelling (re-reflected) decompression wave in mid-systole. AIx correlated positively with age, inversely with height and was higher in women. In contrast log WRI and Pb/Pf showed negative associations with age, were unrelated to height and did not differ significantly by gender. Conclusions AIx has serious limitations as a measure of wave reflection. Negative AIx values derived from Type C waves should not be used as estimates of wave reflection magnitude

    Importance of Stress Mapping of Aortic Wall in Aortic Valve Disease

    Get PDF
    We read the paper by Guzzardi et al. (1) with great interest. These investigators demonstrate the effects of specific types of aortic valve anomaly on the pattern of aortic wall shear stress (WSS) measured by 4-dimensional cardiovascular magnetic resonance (CMR) and the relationships among WSS, ascending aorta shape and dilation, and wall degeneration. We have previously shown that increased WSS quantified by computational fluid dynamics (CFD) on the basis of pre-operative magnetic resonance imaging coincided with severe disruption of the media of the aorta, as documented by histological examination (Figure 1) (2). The findings of Guzzardi et al. (1) confirm and extend our previous findings

    Arterial pressure: agreement between a brachial cuff-based device and radial tonometry

    Get PDF
    Objectives: Aortic (central) blood pressure (BP) differs from brachial BP and may be a superior predictor of cardiovascular events. However, its measurement is currently restricted to research settings, owing to a moderate level of operator dependency. We tested a new noninvasive device in a large UK cohort. The device estimates central BP using measurements obtained with an upper arm cuff inflated to suprasystolic pressure. We compared these estimates with those obtained using radial tonometry as well as with invasively acquired measurements of aortic BP in a limited number of individuals. Methods: Consecutive cuff-based and tonometry-based estimates of the pressure waveform and the central BP were obtained from 1107 individuals (70 ± 6 years). Short-term and long-term reproducibility studies were performed on 28 individuals. Simultaneous cuff-based and invasively measured pressure traces were acquired and compared in an additional six individuals (65 ± 20 years). Results: Central systolic BP, as estimated by the cuff-based device, was found to be highly reproducible (coefficient of variation 4 and 8% for short and long-term reproducibility, respectively) and was comparable to that estimated by tonometry (average difference 3 ± 6 mmHg, intraclass correlation coefficient = 0.91). The cuff-based pressure waveforms were similar to those acquired invasively (cross-correlation coefficient 0.93), and the difference in the estimated central systolic BP was −5 ± 8 mmHg (P = 0.2). Conclusion: Cuff-based devices show promise to simplify the measurement of central BP, whilst maintaining a similar fidelity to tonometry. This could lead to improved adoption of estimates of central BP in clinical practice

    Mode Switching Is the Major Mechanism of Ligand Regulation of InsP3 Receptor Calcium Release Channels

    Get PDF
    The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a critical role in generation of complex Ca2+ signals in many cell types. In patch clamp recordings of isolated nuclei from insect Sf9 cells, InsP3R channels were consistently detected with regulation by cytoplasmic InsP3 and free Ca2+ concentrations ([Ca2+]i) very similar to that observed for vertebrate InsP3R. Long channel activity durations of the Sf9-InsP3R have now enabled identification of a novel aspect of InsP3R gating: modal gating. Using a novel algorithm to analyze channel modal gating kinetics, InsP3R gating can be separated into three distinct modes: a low activity mode, a fast kinetic mode, and a burst mode with channel open probability (Po) within each mode of 0.007 ± 0.002, 0.24 ± 0.03, and 0.85 ± 0.02, respectively. Channels reside in each mode for long periods (tens of opening and closing events), and transitions between modes can be discerned with high resolution (within two channel opening and closing events). Remarkably, regulation of channel gating by [Ca2+]i and [InsP3] does not substantially alter channel Po within a mode. Instead, [Ca2+]i and [InsP3] affect overall channel Po primarily by changing the relative probability of the channel being in each mode, especially the high and low Po modes. This novel observation therefore reveals modal switching as the major mechanism of physiological regulation of InsP3R channel activity, with implications for the kinetics of Ca2+ release events in cells
    • …
    corecore