
Special Issue Article

Proc IMechE Part H:
J Engineering in Medicine
2020, Vol. 234(11) 1288–1299
� IMechE 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0954411920917557
journals.sagepub.com/home/pih

The modified arterial reservoir: An
update with consideration of
asymptotic pressure (PN) and
zero-flow pressure (Pzf)
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Abstract
This article describes the modified arterial reservoir in detail. The modified arterial reservoir makes explicit the wave
nature of both reservoir (Pres) and excess pressure (Pxs). The mathematical derivation and methods for estimating Pres in
the absence of flow velocity data are described. There is also discussion of zero-flow pressure (Pzf), the pressure at
which flow through the circulation ceases; its relationship to asymptotic pressure (PN) estimated by the reservoir model;
and the physiological interpretation of Pzf . A systematic review and meta-analysis provides evidence that Pzf differs from
mean circulatory filling pressure.
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Introduction

The concept of an arterial reservoir dates back to
Borelli1 and Hales;2 it was developed further by
Weber3 (from whom the term Windkessel is derived in
Salisbury et al.4) and by Frank,5 who provided a math-
ematical framework for it. More recently, in the early
2000s, a revised form of the arterial reservoir was pro-
posed by Parker6 and the results using this approach
were first published by Wang et al.7 According to this
model, the pressure waveform was envisaged as the
sum of a Windkessel pressure and (mainly forward)
travelling waves.7 While this proposal elicited interest,
it also received criticism,8–11 with criticisms related to
the assumption of a uniform Windkessel pressure being
particularly pertinent. More recently, the model was
revised to address this problem.12 In the revised model,
the Windkessel pressure was replaced by a reservoir
pressure, which was made up from waves and was
delayed by the time taken for waves to travel from the
aortic root to the location of measurement.12 This
modification makes explicit the wave nature of reser-
voir pressure, and this modified definition has achieved
some degree of acceptance.13 The aim of this review is
to describe the modified arterial reservoir in more detail
and to provide more information regarding the asymp-
totic pressure, PN, its relationship to zero-flow pressure

(Pzf), the arterial pressure at which flow through the
circulation ceases, also termed critical closing pres-
sure,14 and the physiological interpretation of Pzf.

Wave travel in arteries and its relation to
the reservoir

The existence of wave travel in arteries is undisputed.13

A number of studies have envisaged the arterial system
as a single or a T-tube; however, this approach to arterial
hemodynamics is too simplistic, and a more sophisti-
cated model of wave propagation in arteries is neces-
sary.15 More realistic one-dimensional models show that
the branching pattern of the arterial circulation gives rise
to myriad reflected waves, which are themselves re-
reflected and re-re-reflected before returning to the aortic
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root.16,17 Tapering of the arterial system may also make
an important contribution to wave reflection patterns,18

and inclusion of visco-elastic behaviour may also be
important in intermediate size vessels.19 The reservoir
pressure can be understood as the pressure due to the
cumulative effect of these reflected and re-reflected
waves, which decrease in magnitude but increase in num-
ber as they travel. Another implication of the branching
nature of the arterial tree is that the reflection coefficient
at a bifurcation depends on the direction of travel of the
wave. At bifurcations in large arteries, the combined
admittance of the offspring arteries is similar to that of
the parent artery (i.e. most bifurcations are well-matched
for forward travelling waves); however, this also means
that they are poorly matched for backward travelling
waves.17,20 Thus, large reflections from peripheral reflec-
tion sites are dispersed by the re-reflections they undergo,
while travelling back to the aortic root. These considera-
tions account for a ‘horizon effect’ where the apparent
time of reflection of the initial compression wave, as indi-
cated by a peak in the backward wave intensity, is inde-
pendent of the site where the measurements are made.16

A modified definition of reservoir pressure

The modified definition of the reservoir pressure (Pres)
assumes that the reservoir is made up of a network of
N arteries. It is also assumed that the root artery (the
aorta), A0, is connected to the left ventricle and receives
the stroke volume, Qin, and that there are K terminal
vessels – these are assumed to be connected to the
microcirculation which is not considered part of the
reservoir. A time-varying average pressure in each ves-
sel P(t, n) is defined as the integral of pressure over the
length of each arterial segment. A simplified version of
this scheme is illustrated in Figure 1.

The conservation of mass for the arterial network
constrains the rate of change in the total volume, V, of
the system to be equal to the difference between volume
flow rate into the root, Qin, and the sum of the flow out
of the terminal vessels, Qout

dV

dt
¼ Qin �Qout ð1Þ

We assume that the end of each terminal vessel is
coupled to a resistance, Rk, which is assumed to be con-
stant (i.e. independent of pressure). Under these condi-
tions, the flow out of the kth terminal vessel is given by

Qk ¼
P nð Þ � Pzf

� �
Rk

ð2Þ

where Pzf (zero-flow pressure/critical closing pressure)
is the pressure at which flow through the microcircula-
tion ceases. As will be discussed later, Pzf can be greater
than zero (or venous pressure), and for the purpose of
this model, it is assumed that it is the same for all ter-
mini. We also assume that the compliance of the nth
vessel is Cn, where Cn ¼

R Ln

0 AðnÞ=ðrnðnÞ2Þ and Ln, An

and vn are the length, cross-sectional area and wave
speed, respectively, of the nth vessel. The mass conser-
vation equation can now be written in terms of the
properties of the individual vessels

Qin �
X
N

Cn
dP nð Þ
dt
�
X
K

Pk � Pzf

� �
Rk

¼ 0 ð3Þ

where
P

N is the sum over all of the vessels and
P

K is
the sum over the terminal vessels.

Windkessel pressure

Frank’s two-element Windkessel model has similarities
and differences from reservoir pressure. The
Windkessel pressure Pwk is assumed to be uniform.5

With this assumption, the pressure, Pwk, can be taken
outside of the summations and the mass conservation
equation reduces to

Qin � C
dPwk

dt
�

Pwk � Pzf

� �
R

¼ 0 ð4Þ

where C ¼
P

N Cn is the total arterial compliance and
ð1=RÞ ¼

P
Kð1=RÞ is the total peripheral resistance,

using the usual formula for resistances in parallel.
This is, in essence, the approach originally used by

Frank to solve for the Windkessel pressure, although
Frank assumed that Pzf = 0.

Pwk takes account of the compliant nature of the
large arteries but the assumption of a uniform pressure
implies an infinite wave speed, which is physiologically
implausible. The modified reservoir pressure does not
share this defect.

Figure 1. A simplified schematic showing a network of
branching arteries corresponding to an arterial reservoir (where
N = 11 and K = 6). The inlet Qin to the network is labelled as A0

and the flow into the reservoir is indicated by the large arrow
directed into the system. The termini linking to the
microcirculation are the smallest vessels and the outflow Qout is
indicated by arrows going out of the system. The
microcirculation (through which the reservoir discharges) and
venous system are not shown as they are not considered part of
the arterial reservoir.
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Reservoir pressure and excess pressure

The modified reservoir pressure is defined as a pressure
that is similar in form throughout the extent of the
arterial reservoir, but which is delayed by the time it
takes for waves to travel from the root to that location;
hence, the reservoir pressure in the nth vessel is

Pres t; nð Þ ¼ Pres t� t nð Þð Þ ð5Þ

where t is time, and t(n) is the wave transit time, the
time it takes for waves to travel from the root to vessel
n. With this assumption, the mass conservation equa-
tion takes the form

Qin �
X
n

Cn
dPres t� t nð Þð Þ

dt

�
X
k

Pres t� t nð Þð Þ � Pzf

� �
R

¼ 0

ð6Þ

This equation involves only one pressure, Pres, instead
of involving N different pressures, P(n). This equation
is a first-order time-delay differential equation with
constant coefficients. These have been studied exten-
sively in the context of control theory and there are
existence and uniqueness theorems that ensure that a
solution of this equation exists, with suitable boundary
conditions, and that it is unique. Unfortunately, there is
no established way to find the solution for a particular
case, and most solutions are found by iterative meth-
ods. Solving the equation would require knowledge of
all of the individual compliances and resistances of all
of the arteries – knowledge that is impossible to obtain
in practice, since there are too many vessels.

The excess pressure (Pxs) in the nth vessel is defined
as the difference between the measured pressure and the
reservoir pressure

Pxs t; nð Þ ¼ P t; nð Þ � Pres t� t nð Þð Þ ð7Þ

with these definitions Pres and Pxs can be calculated as
shown below.

Calculation of reservoir pressure

All of the methods of estimating the reservoir pressure
are based on the assumption that the wave transit times
are small in comparison with the cardiac cycle (t(n) �
1 cardiac period – assumed to be ;1 s in human). This
is supported by in vivo measurements of the aorto-iliac
transit time in humans (i.e. the time taken for the initial
compression wave to traverse the whole of the aorta
from aortic root to iliac bifurcation) which is \ 80
ms,21 while the time from foot to peak pressure is
approximately 2.5-fold longer (;200 ms22).

So, using a Taylor expansion for Pres(t 2t(n))

Pres t� t nð Þð Þ ¼ Pres tð Þ+O t nð Þð Þ ð8Þ

where OðtðnÞÞ stands for the terms of order, tn.
Substituting into the mass conservation equation, the
terms involving Pres can be taken out of the summa-
tions and we obtain the ordinary differential equation
(ODE)

C
dPres

dt
¼ Qin �

Pres � Pzf

R
ð9Þ

where, as in the derivation of the Windkessel pressure,
C ¼

P
N Cn, and ð1=RÞ ¼

P
Kð1=RkÞ. This shows that

to OðtðnÞÞ, the equation for Pres is identical to the equa-
tion for Pwk, but without the need to assume a uniform
pressure throughout the reservoir. This also makes clear
that the reservoir pressure travels as waves and is the
basis of the method of estimation of Pres.

Calculating Pres when pressure and aortic flow are
known

If the aortic inflow, Qin(t), is measured simultaneously
with the pressure, P0(t), then the calculation of Pres(t) is
relatively straightforward. The solution of the ODE is
easily found by quadrature

Pres tð Þ � Pzf ¼ e�
t

RCðt
0

Qin sð Þ � e s
RC � ds+ Pres 0ð Þ � Pzf

� �
� e� t

RC

ð10Þ

where s is time from the start of systole. During dia-
stole, when the valve is closed, Qin = 0, and the solu-
tion becomes

Pres tð Þ � Pzf ¼ Pes � Pzf

� �
� e� t

RC ð11Þ

where Pes is the pressure at end-systole. This is a mono-
exponentially falling function of time with a time constant,
t = RC. This is one of several well-established ways to
estimate total arterial compliance,23 although it should be
noted that inclusion (or not) of Pzf has a substantial effect
on estimates of the time constant or arterial compliance
using this method.24–26 We use maximum negative rate of
pressure change (max 2dP/dt) as the indicator of end-
systole to determine Pes, since the timing of this event has
been shown to agree very closely (mean error \ 0.4 ms)
with the time of cessation of aortic flow at the end of sys-
tole in invasive studies in dogs27 and is easy to identify in
recorded pressure waveforms.

Frequently reservoir pressure calculations are per-
formed using flow velocity rather than volumetric flow
rate (Q); under these circumstances, it should be
remembered that while estimates of Pres, Pzf, and t are
unaffected, the values of R and C are equal to resis-
tance 3 area and compliance/area, where the area
refers to the cross-sectional area of the aorta.
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This method of calculating Pres can be used in
experiments, where both pressure and flow rate (or
velocity) are measured in the aorta. Clinically, however,
it can be difficult to obtain simultaneous measurements
of pressure and flow and so another more approximate
method has been devised for calculating Pres that
requires only the pressure to be measured.

Calculating Pres when only pressure is known

The method for calculating Pres using only pressure
measurement is based on an observation made by
Wang et al.7 in dogs, who reported that the excess pres-
sure, Pxs, was directly proportional to the flow into the
aortic root, Qin. Subsequent studies in humans employ-
ing invasive measurements of pressure and flow velocity
in the aorta28 and non-invasive measurements of caro-
tid artery pressure and aortic flow29,30 have made simi-
lar observations. On this assumption, we can substitute
Qin = zPxs = z(P 2 Pres) into the mass conservation
equation, where z is a constant of proportionality. If
this relationship is viewed as analogous to a three-
element Windkessel model,31 then z will be related to
the characteristic admittance, or 1/Zc (i.e. the inverse of
the characteristic impedance).29 Indeed, Westerhof and
Westerhof15 have proposed that if the analogy with the
three-element Windkessel model holds, then Pres will be
equal to twice the backward pressure (Pb). (This rela-
tionship can be shown to be true in diastole when aortic
flow (Q) = 0, but the derivation relies on the assump-
tion that Q = Qin which may be questionable.)

If we define ks = z/C and kd = 1/RC, then equation
(9) can be written as

dPres

dt
+ kd Pres � Pzf

� �
¼ ks P tð Þ � Presð Þ ð12Þ

This equation is similar in form to the previous
ODE, but the right-hand side depends on P(t) rather
than Qin.

This first-order linear differential equation can be
solved as

Pres ¼ e� ks + kdð Þt

ðt
0

P t0ð Þe ks + kdð Þt0dt0+
kd

ks + kd
1� e� ks + kdð Þt
� �

Pzf

ð13Þ

This equation can be solved by iterative non-linear
regression based on a three-element Windkessel
model32 or alternatively the diastolic parameters kd and
Pzf can be estimated by fitting an exponential curve to
the pressure during diastole

Pres � P‘ ¼ Pes � P‘ð Þe�kdt ð14Þ

where the offset of the fit (PN) is assumed to be equal
to Pzf (NB the validity of this assumption is examined
below). Then, ks is estimated by minimising the square

error between P and Pres obtained over diastole in
equation (12).

This formulation of reservoir and excess pressure
makes the difference between Windkessel and reservoir
pressures clear as previously noted by Alastruey33

(Figure 2).
In principle, the approach described here should only

be valid if Qin = zPxs, which implies the absence of
reflections. As discussed, reflections are always present
in the circulation, but this assumption may hold within
reasonable limits in the proximal aorta of healthy indi-
viduals.7,34,35 It is less likely to be true in more periph-
eral locations where prominent wave reflections are
observed in early systole.36,37 The assumption of pro-
portionality between Qin and Pxs may also not apply
when there is pathology giving rise to marked wave
reflections in the proximal aorta.38,39 Despite these pro-
visos, estimates of Pres made at various locations in the
aorta (the transverse aortic arch, the diaphragmatic
aorta, the aorta at the level of the renal arteries, and the
aortic bifurcation)40 and in the brachial and radial
artery using invasive methods41 are very similar to esti-
mates in the proximal aorta (within 5%). Estimates of
Pres made using non-invasive methods also show accep-
table concordance with aortic measures (intra-class cor-
relation coefficient of 0.77), although they are less
accurate, probably due to errors in the estimation of
systolic and diastolic pressure by cuff methods.42 In
contrast, as expected, estimates of Pxs differ substan-
tially between the proximal aorta and more peripheral
locations,40–42 with Pxs being larger in more proximal

Figure 2. Circuit diagrams illustrating the comparison between
a two-element Windkessel and reservoir pressures
conceptualised as a three-element Windkessel model. (a) Two-
element Windkessel model; here, Pin is equal to Windkessel
pressure (Pwk). (b) Three-element Windkessel model of
reservoir pressure (Pres). In the three-element model, Pres still
corresponds to the pressure across the capacitance, C, but Pres

is smaller than Pin due to the pressure drop across the
characteristic impedance, Zc. Modified from Alastruey.33.
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locations. Alastruey33 proposed an alternative defini-
tion of Pxs, where it would be redefined as proportional
to flow at any location; however, such a proposal would
also result in a redefinition of Pres and so far the value
of this approach seems not to have been explored.

Currently, there appear to be no publications where
estimates of Pres based on pressure and flow velocity
have been compared with estimates derived from pres-
sure alone, although unpublished data from our group
indicate excellent agreement between the approaches
(correlation coefficient . 0.9; mean difference in peak
Pres= 2 6 1 mmHg, p \ 0.002) based on invasive mea-
surements of pressure and flow velocity in the aorta.

The relation of Pzf to PN and the
physiological interpretation of Pzf

The presence of positive pressure in the arterial circula-
tion following cessation of flow, Pzf, has been recognised
for many years.43 In the context of the arterial reservoir,
some authors have assumed that Pzf corresponds to
venous pressure (or zero as a rough approximation to
venous pressure)29,44 or else that it should represent
mean circulatory filling pressure (MCFP).32,45 MCFP,
as defined by Guyton, is ‘the pressure that would be
measured at all points in the entire circulatory system if
the heart were stopped suddenly and the blood were
redistributed instantaneously in such a manner that all
pressures were equal’ (quoted in 46).46 Previous work in
several species47,48 including some necessarily limited
work in man49 has shown that Pzf differs from venous
pressure and that in most cases47,48,50,51 (but not all

cases52), there is no equalisation of arterial pressure with
venous or right atrial pressure, even after prolonged ces-
sation of flow. Whether Pzf corresponds to MCFP has
not been formally examined previously as far as we can
tell, so in order to address this question, we undertook a
systematic review of the literature; some of these data
have been published previously in abstract form.53

A literature search was performed using PubMed
and was limited to full articles in English using the
search terms ‘MCFP’ OR ‘Mean systemic filling pres-
sure’ OR ‘critical closing’ OR ‘zero-flow’ in publica-
tions prior to 01/09/2019. Only data relating to
measurements of pressure following cessation of sys-
temic flow were included; other exclusions were indi-
vidual case reports, pregnancy, non-adult animals, not
mammalian, post-mortem, or any non-human models
of disease. Meta-analysis was performed using a ran-
dom effects model, since it was anticipated that there
would be heterogeneity between studies. Analyses were
conducted in Stata 15.1. Data are shown as means
(95% confidence intervals (CIs)).

A total of 1255 unique publications were identified
after removal of duplicates; 1235 were excluded during
screening. The remaining 20 studies48–51,54–69 with Pzf

data were included in a meta-analysis (Figure 3); these
included data from dog, rat, pig and human; eight of
these articles also provided data on MCFP from the
same studies. Some further details of these studies are
shown in Supplementary Table S1. From this analysis,
Pzf = 26.5 (23.4, 29.5) mmHg (Figure 4; 20 studies;
mean (95% CI); n = 311; I2 = 97%; p \ 0.001) and
MCFP = 10.6 (9.3, 12.0) mmHg (eight studies;

Figure 3. A preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram for zero-flow pressure (Pzf).
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n = 178; I2 = 96%; p \ 0.001). The difference
between Pzf and MCFP was 15.1 (12.0, 18.3) mmHg
(eight studies; n = 178; I2 = 97%; p \ 0.001). The
comparison between Pzf and MCFP is shown graphi-
cally in Figure 5. There was no evidence of small sam-
ple bias based on an Egger test for either analysis (p .

0.05 for both). Further analyses provided no convin-
cing evidence that the duration of cessation of flow was
related to the estimate of Pzf based on meta-regression
(p = 0.1) although the small sample size precluded firm
conclusions. Similarly, the extent of heterogeneity
within sub-groups (e.g. species, method of calculation)
prevented any reliable conclusions on the importance
of these factors in the observed heterogeneity in Pzf

between studies. Nevertheless, it seems plausible that
methodological differences between studies contribute
to variability in the estimates of Pzf . There was evi-
dence that MCFP differed between species (test for het-
erogeneity between sub-groups, p = 0.007) but there

was insufficient data to examine whether reported dif-
ferences between studies contributed to heterogeneity
in MCFP (data not shown).

Based on these findings, it seems clear that despite
considerable heterogeneity Pzf does not equal MCFP.
It is noteworthy that this is consistent with the standard
practice in many experiments designed to estimate
MCFP which either routinely transfer blood from the
arterial to the venous circulation to achieve equilibra-
tion of pressure57,70 or else apply a correction factor to
take account of the ‘trapped’ volume of blood in the
arterial circulation after cessation of flow.57 We note
that this finding does not necessarily imply that arterial
and venous pressures cannot equilibrate after extremely
prolonged cessation of flow.71 The duration of cessa-
tion of inflow in the studies identified in the systematic
review was between 3 and 30 s (median 12.5 s), which is
longer than the time constant of the decline in pressure
(typically ;2 to 3 s) but short enough to at least

Figure 4. Forest plot of meta-analysis of zero-flow pressure (Pzf). Data categorised by species.
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partially limit the secondary rises in MCFP due to
reflex changes in vasomotor tone, and decreased
venous compliance that tend to reduce differences
between MCFP and Pzf through elevated MCFP.71 It
is also unlikely that substantial oedema or hemodilu-
tion would occur over this time span and affect esti-
mates of MCFP and Pzf. Most studies did not measure
flow as well as pressure, but those that did reported
that cessation of flow occurred between 3 and 20 s after
cardiac arrest or switching off the perfusion
pump.56,58,62 This suggests that the duration of cessa-
tion of inflow was probably sufficient to obtain a reli-
able estimate of Pzf.

Values of Pzf that exceed MCFP are consistent with
previous suggestions that Pzf represents a pressure due
to a Starling resistor effect, sometimes termed
(although some argue inappropriately72,73) a ‘vascular
waterfall’.74Pzf is also often termed critical closing pres-
sure after Burton,75 although it is now generally
accepted that vessel closure does not account for Pzf.

76–

78Pzf is not a fixed parameter and varies between spe-
cies,14 individuals,79 physiological (or pathophysiologi-
cal) conditions,79 tissues58,61,80 or even within tissues.81

Given the reported between-tissue differences in Pzf, it
is likely that systemic Pzf is a weighted average of mul-
tiple Pzf. This may relate to differences in vascular
resistance between tissues, since there is evidence that
vasoconstriction and vasodilation increase and decrease
Pzf quite markedly, respectively.14,54,82 Indeed, in the
rabbit ear, vasoconstriction has been reported to
increase Pzf to ;130 mmHg – in excess of mean arterial
pressure in the rabbit!14 Increased tissue interstitial
pressure also influences Pzf, as would be expected from
a Starling resistor.83 Another factor that influences Pzf

is blood rheology; estimates of Pzf are lower following
hemodilution,48 although since positive Pzf has been

observed using physiological saline,43,84 it seems
unlikely blood-related factors such as red cell aggrega-
tion,85 the complex viscous behaviour of blood at low
flow86 or leukocyte plugging87 fully account for Pzf.

The duration of cessation of flow has been reported
to affect the estimated Pzf.

88 Short duration cessation of
flow may result in over-estimates due to the effects of
capacitive discharge from downstream vessels as sug-
gested by Spaan89 and Magder.90 This effect, which
assumes that a simple RC compartment model increases
‘apparent Pzf’ by an amount equal to 2¢RdP/dt (where
¢ is the downstream microvascular compliance)91 will
introduce a difference between PN and Pzf that depends
on the rate of pressure decline in diastole. Estimates of
the effect of capacitive discharge have been made in the
coronary circulation and show that this effect could
easily account for a ;10 mmHg difference between PN

and Pzf.
91 Alternatively, longer periods of flow cessa-

tion may lead to changes in vascular properties due to
the lack of flow or ischaemia or alterations in rheology
or tissue interstitial pressure. Braakman et al.82 pre-
sented evidence for two Pzf (instantaneous (arteriolar)
and steady-state (venous)) in skeletal muscle, with the
‘instantaneous’ Pzf being dependent on vasoconstrictor
tone, whereas the ‘steady-state’ Pzf was not. It seems
likely that the different techniques used to estimate Pzf

will be differentially influenced by the factors that influ-
ence Pzf and that this will contribute to variation in esti-
mates of Pzf.

Despite these considerations, evidence presented here
suggests that Pzf is substantially lower than estimates of
PN (based on fitting diastolic pressure to equation
(14)). PN in the human aorta has been reported to be
between 54 and 75 mmHg,26,40 while the upper limit of
the predictive interval of Pzf in humans in our meta-
analysis was 51 mmHg. This is consistent with a

Figure 5. Forest plot of meta-analysis of differences between zero-flow pressure (Pzf) and mean circulation filling pressure (MCFP)
in studies in which both were measured.
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previous report in humans where PN calculated from
normal beats was ;29 mmHg greater than Pzf calcu-
lated during arrest.49 Estimates of PN will include
uncertainties associated with fitting only short dura-
tions of diastole, particularly if the fit includes the per-
turbation in pressure that accompanies the onset of
isovolumic contraction prior to the foot of the next
pressure cycle.92 However, this seems insufficient to
account for such a large difference and it may indicate
that one or more assumptions in the present approach
to fitting reservoir pressure is not valid.

The assumption of a mono-exponential decline in dia-
stolic pressure has been examined experimentally by a few
authors. From seven patients in whom aortic pressure
was measured invasively, Liu et al.24 looked at whether
estimates of the slope of the semi-log regression of pres-
sure and time gave consistent estimates of, and whether
regression of dP/dt versus P was linear during diastole;
they found that results using either method were inconsis-
tent with a mono-exponential decline. Kottenberg-
Assenmacher et al.49 reported that the goodness of fit (by
x2) of the time-dependent decline in invasive aortic pres-
sure following circulatory arrest in humans was slightly
better using a two-exponential model or using a model
including a pressure-dependent coefficient, although the
effect on the estimates of these more complex models on
the estimates of PN was small (\ 2 mmHg). Schipke
et al.51 reported that the correlation coefficients (presum-
ably to the linearized semi-log transformation of the
mono-exponential function) were 0.92 6 0.05, and that
data were less well fitted by linear and quadratic func-
tions, but other functions seem not to have been exam-
ined. Brunner et al.48 reported that after stopped flow the
relationship between the natural logarithm of the declin-
ing pressure with time was linear in seven out of 13 dogs
(consistent with a mono-exponential decline) but in the
remaining six dogs, the data were not consistent with a
mono-exponential decline. Sylvester et al.50 reported that
the decline in pressure following stopped flow was ‘well-
described’ by a mono-exponential function with standard
deviations on average \ 2 mmHg but provided no other
quantification of fits.

On the basis of theoretical considerations regarding
small artery compliance,89,90 the pressure dependence
of large artery compliance24,93 and resistance,89,94 it
seems unlikely that the assumption of a mono-
exponential decline should be valid.89,90 Still, in view of
the well-recognised difficulty in fitting multiple expo-
nentials to complex data,95,96 we believe that the fitting
of multi-exponential functions to diastolic pressure is
unlikely to yield much advantage, although it may be
worth exploring.

Conclusion

The arterial Windkessel model is undoubtedly a simple
and widely used conceptual model of the circulation. In

its modified form, the arterial reservoir can be viewed
as analogous to the Windkessel but comprising multi-
ple reflected (and re-reflected) waves that arise due to
the different forward and backward impedance proper-
ties of a branching network,20,97,98 which give rise to a
‘horizon effect’.16 The waves that make up the reservoir
are indiscernible by wave intensity analysis as their
individual magnitudes are very small,37 but together
they make up a large store of energy. This energy,
which is effectively trapped within the large elastic
(conduit) arteries due to reflection and re-reflection,
provides the motive force for tissue perfusion during
diastole. This wave entrapment45 equates to the volume
storage of a classic Windkessel and accounts for the
apparent similarities between these models. The waves
that make up the reservoir persist across several cardiac
cycles and account for most of the energy present in
any particular cycle at quasi-steady state.35 We have
previously proposed that mean arterial pressure should
be viewed as largely a product of these waves rather
than the equilibrium state of the circulation as envi-
saged by Fourier-based impedance analysis.99

Following cessation of ejection, pressure declines in
a quasi-exponential manner towards a value, Pzf, which
is the pressure at which outflow through the microcir-
culation ceases. A review of the experimental evidence
suggests not only that Pzf exceeds venous pressure or
MCFP but also that estimates of the offset (Pinf)
derived from fitting a mono-exponential function to
the decline in pressure during diastole of a normal car-
diac cycle are substantially greater than Pzf, possibly as
a consequence of the mono-exponential assumption.
Further work is required to establish on how best to
estimate Pzf from recordings of normal cardiac cycles.

Several features of the modified arterial reservoir
model (and its underlying wave nature) contrast with
interpretations that would be made if the circulation
were viewed as analogous to a single tube, and the util-
ity of the single tube model is questionable in our view
and that of others.100 While tangential to the content
of this review, it is worth noting that the presence of
multiple re-reflections also casts doubt on the utility of
the ratio of forward to backward pressure, Pb/Pf (often
termed reflection magnitude) as a measure of reflection,
since a substantial part of forward pressure will arise
from re-reflection of initially reflected (backward tra-
velling) waves. This issue has also been alluded previ-
ously,45,100–102 but its implications for pulse wave
analysis seem not to have been fully apprehended.

In summary, the modified arterial reservoir repre-
sents a useful, albeit reduced, model of the circulation.
The ability of parameters derived from this model to
predict future cardiovascular events independent of
conventional cardiovascular risk factors103–111 suggests
this model has clinical utility. No model of the circula-
tion is perfect, however, and its limitations need to be
recognised.
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