487 research outputs found

    Levinson's Theorem for Non-local Interactions in Two Dimensions

    Full text link
    In the light of the Sturm-Liouville theorem, the Levinson theorem for the Schr\"{o}dinger equation with both local and non-local cylindrically symmetric potentials is studied. It is proved that the two-dimensional Levinson theorem holds for the case with both local and non-local cylindrically symmetric cutoff potentials, which is not necessarily separable. In addition, the problems related to the positive-energy bound states and the physically redundant state are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email: [email protected], [email protected]

    On Locality in Quantum General Relativity and Quantum Gravity

    Get PDF
    The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence principle and the path-integral formulation of quantum propagation, quantum-geometric locality leads in a natural manner to the formulation of quantum-geometric propagation in curved spacetime. Its extrapolation to geometric quantum gravity formulated over quantum spacetime is described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may be reached at: [email protected] To appear in Found. Phys. vol. 27, 199

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    What's in a message? Delivering sexual health promotion to young people in Australia via text messaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in communication technologies have dramatically changed how individuals access information and communicate. Recent studies have found that mobile phone text messages (SMS) can be used successfully for short-term behaviour change. However there is no published information examining the acceptability, utility and efficacy of different characteristics of health promotion SMS. This paper presents the results of evaluation focus groups among participants who received twelve sexual health related SMS as part of a study examining the impact of text messaging for sexual health promotion to on young people in Victoria, Australia.</p> <p>Methods</p> <p>Eight gender-segregated focus groups were held with 21 males and 22 females in August 2008. Transcripts of audio recordings were analysed using thematic analysis. Data were coded under one or more themes.</p> <p>Results</p> <p>Text messages were viewed as an acceptable and 'personal' means of health promotion, with participants particularly valuing the informal language. There was a preference for messages that were positive, relevant and short and for messages to cover a variety of topics. Participants were more likely to remember and share messages that were funny, rhymed and/or tied into particular annual events. The message broadcasting, generally fortnightly on Friday afternoons, was viewed as appropriate. Participants said the messages provided new information, a reminder of existing information and reduced apprehension about testing for sexually transmitted infections.</p> <p>Conclusions</p> <p>Mobile phones, in particular SMS, offer health promoters an exciting opportunity to engage personally with a huge number of individuals for low cost. The key elements emerging from this evaluation, such as message style, language and broadcast schedule are directly relevant to future studies using SMS for health promotion, as well as for future health promotion interventions in other mediums that require short formats, such as social networking sites.</p

    Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques

    Get PDF
    The aim of the present review is to introduce the reader to some of the physical notions and of the mathematical methods that are relevant to the study of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyze some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons, as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g., the linear or the nonlinear limit, or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new references added, fixed typo
    corecore