25 research outputs found

    Long-Range Intra-Protein Communication Can Be Transmitted by Correlated Side-Chain Fluctuations Alone

    Get PDF
    Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 Å in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations

    Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV-1 Env glycoprotein mediates virus entry by catalyzing direct fusion between the virion membrane and the target cell plasma membrane. Env is composed of two subunits: gp120, which binds to CD4 and the coreceptor, and gp41, which is triggered upon coreceptor binding to promote the membrane fusion reaction. Env on the surface of infected cells is a trimer consisting of three gp120/gp41 homo-dimeric protomers. An emerging question concerns cooperative interactions between the protomers in the trimer, and possible implications for Env function.</p> <p>Results</p> <p>We extended studies on cooperative subunit interactions within the HIV-1 Env trimer, using analysis of functional complementation between coexpressed inactive variants harboring different functional deficiencies. In assays of Env-mediated cell fusion, complementation was observed between variants with a wide range of defects in both the gp120 and gp41 subunits. The former included gp120 subunits mutated in the CD4 binding site or incapable of coreceptor interaction due either to mismatched specificity or V3 loop mutation. Defective gp41 variants included point mutations at different residues within the fusion peptide or heptad repeat regions, as well as constructs with modifications or deletions of the membrane proximal tryptophan-rich region or the transmembrane domain. Complementation required the defective variants to be coexpressed in the same cell. The observed complementation activities were highly dependent on the assay system. The most robust activities were obtained with a vaccinia virus-based expression and reporter gene activation assay for cell fusion. In an alternative system involving Env expression from integrated provirus, complementation was detected in cell fusion assays, but not in virus particle entry assays.</p> <p>Conclusion</p> <p>Our results indicate that Env function does not require every subunit in the trimer to be competent for all essential activities. Through cross-talk between subunits, the functional determinants on one defective protomer can cooperatively interact to trigger the functional determinants on an adjacent protomer(s) harboring a different defect, leading to fusion. Cooperative subunit interaction is a general feature of the Env trimer, based on complementation activities observed for a highly diverse range of functional defects.</p

    Watching two conjugated polymer chains breaking each other when colliding in solution

    No full text
    While collision theory successfully describes the kinetics of chemical reactions, very little is known about the processes at the molecular level, especially if the reacting molecules are large. In this study, using single-molecule spectroscopy, we visually observed that collision between two conjugated polymer (CP) molecules in solution leads to simultaneous rupture of both chains. In addition to opening up the possibility of monitoring chemical processes in solution at the single-molecule level, these results demonstrate that mechanical bending of two stiff conjugated backbones against each other (the effect of leverage) by Brownian motion can weaken the chemical bond and markedly accelerate photochemical oxygen-induced chain scission by at least 20 times. The catalytic effect of the chain bending is also enhanced by a prolonged interaction between the chains owing to their entanglement. These findings are important for the solution processing of CPs in their application in organic electronics, for understanding the degradation mechanisms in CPs and for the development of new catalysts based on mechanical interactions with target molecules

    Accurate prediction of the dynamical changes within the second PDZ domain of PTP1e.

    Get PDF
    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore