99 research outputs found

    Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta

    Get PDF
    Context: Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective: We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors-preeclampsia serum or hypoxic placental conditioned medium- in a fashion reversed by vitamin D. Design, Setting, Patients: ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures: ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results: 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion: Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. © 2014 Brodowski et al

    PIASγ Is Required for Faithful Chromosome Segregation in Human Cells

    Get PDF
    BACKGROUND: The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS: We identify PIASγ as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASγ, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASγ-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASγ and Topoisomerase II. CONCLUSIONS: PIASγ directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASγ in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel

    The importance of imprinting in the human placenta.

    Get PDF
    As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth

    Force encoding in stick insect legs delineates a reference frame for motor control

    No full text
    Zill S, Schmitz J, Chaudhry S, Büschges A. Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology. 2012;108(5):1453-1472
    • …
    corecore