239 research outputs found

    A Genetic Screen for Attenuated Growth Identifies Genes Crucial for Intraerythrocytic Development of Plasmodium falciparum

    Get PDF
    A majority of the Plasmodium falciparum genome codes for genes with unknown functions, which presents a major challenge to understanding the parasite's biology. Large-scale functional analysis of the parasite genome is essential to pave the way for novel therapeutic intervention strategies against the disease and yet difficulties in genetic manipulation of this deadly human malaria parasite have been a major hindrance for functional analysis of its genome. Here, we used a forward functional genomic approach to study P. falciparum and identify genes important for optimal parasite development in the disease-causing, intraerythrocytic stages. We analyzed 123 piggyBac insertion mutants of P. falciparum for proliferation efficiency in the intraerythrocytic stages, in vitro. Almost 50% of the analyzed mutants showed significant reduction in proliferation efficiency, with 20% displaying severe defects. Functional categorization of genes in the severely attenuated mutants revealed significant enrichment for RNA binding proteins, suggesting the significance of post-transcriptional gene regulation in parasite development and emphasizing its importance as an antimalarial target. This study demonstrates the feasibility of much needed forward genetics approaches for P. falciparum to better characterize its genome and accelerate drug and vaccine development

    Which dressing do donor site wounds need?: study protocol for a randomized controlled trial

    Get PDF
    Donor site wounds after split-skin grafting are rather 'standard' wounds. At present, lots of dressings and topical agents for donor site wounds are commercially available. This causes large variation in the local care of these wounds, while the optimum 'standard' dressing for local wound care is unclear. This protocol describes a trial in which we investigate the effectiveness of various treatment options for these donor site wounds. A 14-center, six-armed randomized clinical trial is being carried out in the Netherlands. An a-priori power analysis and an anticipated dropout rate of 15% indicates that 50 patients per group are necessary, totaling 300 patients, to be able to detect a 25% quicker mean time to complete wound healing. Randomization has been computerized to ensure allocation concealment. Adult patients who need a split-skin grafting operation for any reason, leaving a donor site wound of at least 10 cm2 are included and receive one of the following dressings: hydrocolloid, alginate, film, hydrofiber, silicone dressing, or paraffin gauze. No combinations of products from other intervention groups in this trial are allowed. Optimum application and changes of these dressings are pursued according to the protocol as supplied by the dressing manufacturers. Primary outcomes are days to complete wound healing and pain (using a Visual Analogue Scale). Secondary outcomes are adverse effects, scarring, patient satisfaction, and costs. Outcome assessors unaware of the treatment allocation will assess whether or not an outcome has occurred. Results will be analyzed according to the intention to treat principle. The first patient was randomized October 1, 2009. This study will provide comprehensive data on the effectiveness of different treatment options for donor site wounds. The dressing(s) that will prevail in effectiveness, satisfaction and costs will be promoted among clinicians dealing with such patients. Thus, we aim to contribute a well-designed trial, relevant to all clinicians involved in the care for donor site wounds, which will help enhance uniformity and quality of care for these patients. http://www.trialregister.nl, NTR1849. Date registered: June 9, 200

    Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes

    Get PDF
    As fast-charging lithium-ion batteries turn into increasingly important components in forthcoming applications, various strategies have been devoted to the development of high-rate anodes. However, despite vigorous efforts, the low initial Coulombic efficiency and poor volumetric energy density with insufficient electrode conditions remain critical challenges that have to be addressed. Herein, we demonstrate a hybrid anode via incorporation of a uniformly implanted amorphous silicon nanolayer and edge-site-activated graphite. This architecture succeeds in improving lithium ion transport and minimizing initial capacity losses even with increase in energy density. As a result, the hybrid anode exhibits an exceptional initial Coulombic efficiency (93.8%) and predominant fast-charging behavior with industrial electrode conditions. As a result, a full-cell demonstrates a higher energy density (>= 1060 Wh l(-1)) without any trace of lithium plating at a harsh charging current density (10.2 mA cm(-2)) and 1.5 times faster charging than that of conventional graphite

    piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Much of the <it>Plasmodium falciparum </it>genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the <it>Plasmodium </it>genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the <it>Plasmodium </it>genome.</p> <p>Results</p> <p>In this study, we investigated the lepidopteran transposon, <it>piggyBac</it>, as a molecular genetic tool for functional characterization of the <it>Plasmodium falciparum </it>genome. Through multiple transfections, we generated 177 unique <it>P. falciparum </it>mutant clones with mostly single <it>piggyBac </it>insertions in their genomes. Analysis of <it>piggyBac </it>insertion sites revealed random insertions into the <it>P. falciparum </it>genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in <it>P. falciparum </it>with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development.</p> <p>Conclusion</p> <p>Our results clearly demonstrate that <it>piggyBac </it>is a novel, indispensable tool for forward functional genomics in <it>P. falciparum </it>that will help better understand parasite biology and accelerate drug and vaccine development.</p

    Common genetic variability in ESR1 and EGF in relation to endometrial cancer risk and survival

    Get PDF
    We investigated common genetic variation in the entire ESR1 and EGF genes in relation to endometrial cancer risk, myometrial invasion and endometrial cancer survival. We genotyped a dense set of single-nucleotide polymorphisms (SNPs) in both genes and selected haplotype tagging SNPs (tagSNPs). The tagSNPs were genotyped in 713 Swedish endometrial cancer cases and 1567 population controls and the results incorporated into logistic regression and Cox proportional hazards models. We found five adjacent tagSNPs covering a region of 15 kb at the 5′ end of ESR1 that decreased the endometrial cancer risk. The ESR1 variants did not, however, seem to affect myometrial invasion or endometrial cancer survival. For the EGF gene, no association emerged between common genetic variants and endometrial cancer risk or myometrial invasion, but we found a five-tagSNP region that covered 51 kb at the 5′ end of the gene where all five tagSNPs seemed to decrease the risk of dying from endometrial cancer. One of the five tagSNPs in this region was in strong linkage disequilibrium (LD) with the untranslated A61G (rs4444903) EGF variant, earlier shown to be associated with risk for other forms of cancer

    Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    Get PDF
    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations

    Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork

    Get PDF
    Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers

    The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule

    Get PDF
    Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change

    Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability

    Get PDF
    Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators
    corecore