43 research outputs found

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    The 'long' 16th century : a key period of animal husbandry change in England

    Get PDF
    Although many historians have extensively discussed the agricultural history of England between the Late Middle Ages and the Modern Era, this period of crucial changes has received less attention by archaeologists. In this paper, zooarchaeological evidence dated between the Late Middle Ages and the Early Modern period is analysed to investigate changes in animal husbandry during the ‘long’ sixteenth century. The size and shape of the main domestic animals (cattle, sheep, pig and chicken) is explored through biometrical data and discussed in line with evidence of taxonomic frequencies, ageing and sex ratios. Data from 12 sites with relevant chronologies and located in different areas of the country are considered. The results show that, although a remarkable size increase of animals occurred in England throughout the post-medieval period, much of this improvement occurred as early as the sixteenth century. The nature and causes of such improvement are discussed, with the aim of understanding the development of Early Modern farming and the foundations of the so-called Agricultural Revolution
    corecore