18 research outputs found

    Cerebellar ataxia and sensory ganglionopathy associated with light-chain myeloma.

    Get PDF
    BACKGROUND: Cerebellar ataxia with sensory ganglionopathy is a rare neurological combination that can occur in some hereditary ataxias including mitochondrial diseases and in gluten sensitivity. Individually each condition can be a classic paraneoplastic neurological syndrome. We report a patient with this combination who was diagnosed with light-chain myeloma ten years after initial presentation. CASE PRESENTATION: A 65-year-old Caucasian lady was referred to our Ataxia Clinic because of a 6-year history of progressive unsteadiness and a 2-year history of slurred speech. Past medical history included arterial hypertension. The patient was a non-smoker was not consuming alcohol excessively. There was no family history of ataxia. Neurological examination revealed prominent gaze-evoked nystagmus, heel to shin ataxia, gait ataxia, reduced reflexes and loss of vibration sensation in the legs. Cerebellar ataxia was confirmed using magnetic resonance spectroscopy of the cerebellum and sensory ganglionopathy using neurophysiological assessments including blink reflex study. A muscle biopsy that was arranged to explore the possibility of mitochondrial disease revealed amyloidosis. Urinalysis confirmed the presence of light chains. A bone marrow biopsy confirmed the diagnosis of light chain multiple myeloma. CONCLUSIONS: Whilst it could be argued that this could simply be a coincidence, the rarity of these conditions and the absence of an alternative aetiology for the neurological dysfunction argue in favour of a paraneoplastic phenomenon

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Myocarditis, Disseminated Infection, and Early Viral Persistence Following Experimental Coxsackievirus B Infection of Cynomolgus Monkeys

    Get PDF
    Coxsackievirus B (CVB) infection is a common cause of acute viral myocarditis. The clinical presentation of myocarditis caused by this enterovirus is highly variable, ranging from mildly symptoms to complete hemodynamic collapse. These variations in initial symptoms and in the immediate and long term outcomes of this disease have impeded development of effective treatment strategies. Nine cynomolgus monkeys were inoculated with myocarditic strains of CVB. Virological studies performed up to 28 days post-inoculation demonstrated the development of neutralizing antibody in all animals, and the presence of CVB in plasma. High dose intravenous inoculation (n = 2) resulted in severe disseminated disease, while low dose intravenous (n = 6) or oral infection (1 animal) resulted in clinically unapparent infection. Transient, minor, echocardiographic abnormalities were noted in several animals, but no animals displayed signs of significant acute cardiac failure. Although viremia rapidly resolved, signs of myocardial inflammation and injury were observed in all animals at the time of necropsy, and CVB was detected in postmortem myocardial specimens up to 28 days PI. This non-human primate system replicates many features of illness in acute coxsackievirus myocarditis and demonstrates that myocardial involvement may be common in enteroviral infection; it may provide a model system for testing of treatment strategies for enteroviral infections and acute coxsackievirus myocarditis
    corecore