11 research outputs found

    Two Origins for the Gene Encoding α-Isopropylmalate Synthase in Fungi

    Get PDF
    BACKGROUND: The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy. METHODOLOGY/PRINCIPAL FINDINGS: Here we identified the leuA gene encoding alpha-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently. CONCLUSIONS/SIGNIFICANCE: The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events

    Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation

    Get PDF
    Arabidopsis thaliana HomeoBox 1 (AtHB1) is a homeodomain-leucine zipper transcription factor described as a transcriptional activator with unknown function. Its role in A. thaliana development was investigated. AtHB1 expression was analyzed in transgenic plants bearing its promoter region fused to reporter genes. Knock-down mutant and overexpressor plant phenotypes were analyzed in different photoperiod regimes. AtHB1 was mainly expressed in hypocotyls and roots and up-regulated in seedlings grown under a short-day photoperiod. AtHB1 knock-down mutants and overexpressors showed shorter and longer hypocotyls, respectively, than wild type (WT). AtHB1 transcript levels were lower in PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) mutants than in controls, suggesting that AtHB1 is regulated by PIF1 in hypocotyls. β-glucuronidase (GUS) activity in Nicotiana benthamiana leaves cotransformed with PromAtHB1::GUS and 35S::PIF1 indicated that PIF1 induces AtHB1 expression. Hypocotyl lenght was measured in seedlings of athb1, pif1, or double athb1/pif1 mutants and PIF1 or AtHB1 overexpressors in WT, athb1 or pif1 backgrounds, both in short- or long-day. These analyses allowed us to determine that AtHB1 is a factor acting downstream of PIF1. Finally, a transcriptome analysis of athb1 mutant hypocotyls revealed that AtHB1 regulates genes involved in cell wall composition and elongation. The results suggest that AtHB1 acts downstream of PIF1 to promote hypocotyl elongation, especially in response to short-day photoperiods.Fil: Capella, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Ribone, Pamela Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Differentially expressed proteins associated with fusarium head blight resistance in wheat

    Get PDF
    Citation: Zhang, Xianghui, Jianming Fu, Yasuaki Hiromasa, Hongyu Pan, and Guihua Bai. “Differentially Expressed Proteins Associated with Fusarium Head Blight Resistance in Wheat.” PLOS ONE 8, no. 12 (December 20, 2013): e82079. https://doi.org/10.1371/journal.pone.0082079.Background: Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1. Methods: The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins. Results: Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1−NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1−NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification. Conclusions: Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance
    corecore