907 research outputs found

    Draft Genome Sequence of the Haloacid-Degrading Burkholderia caribensis Strain MBA4

    Get PDF
    Burkholderia caribensis MBA4 was isolated from soil for its ability to utilize 2-haloacid. An inducible haloacid operon, encoding for a dehalogenase and a permease, is mainly responsible for the biotransformation. Here, we report the draft genome sequence of this strain.postprin

    The haloacid operon of Burkholderia sp. MBA4 is catabolically repressed

    Get PDF
    Session: Biofilms - Keynotepublished_or_final_versio

    Complete Genome Sequence of the Exopolysaccharide-Producing Burkholderia caribensis Type Strain MWAP64

    Get PDF
    We report the complete genome sequence of Burkholderia caribensis MWAP64 (LMG 18531), which was isolated from soil for its proficiency in producing large amounts of exopolysaccharide that help form microaggregates in a vertisol. There are four replicons with a total size of 9,032,119 bp.published_or_final_versio

    An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated

    Get PDF
    Background: S-Adenosylmethionine synthetase (AdoMetS) catalyzes the formation of S-Adenosylmethionine (AdoMet), the major methyl group donor in cells. AdoMet-mediated methylation of DNA is known to have regulatory effects on DNA transcription and chromosome structure. Transcription of environmental-responsive genes was demonstrated to be mediated via DNA methylation in dinoflagellates. Results: A full-length cDNA encoding AdoMetS was cloned from the dinoflagellate Crypthecodinium cohnii. Phylogenetic analysis suggests that the CcAdoMetS gene, is associated with the clade of higher plant orthrologues, and not to the clade of the animal orthrologues. Surprisingly, three extra stretches of residues ( 8 to 19 amino acids) were found on CcAdoMetS, when compared to other members of this usually conserved protein family. Modeled on the bacterial AdeMetS, two of the extra loops are located close to the methionine binding site. Despite this, the CcAdoMetS was able to rescue the corresponding mutant of budding yeast. Southern analysis, coupled with methylation-sensitive and insensitive enzyme digestion of C. cohnii genomic DNA, demonstrated that the AdoMetS gene is itself methylated. The increase in digestibility of methylation-sensitive enzymes on AdoMet synthetase gene observed following the addition of DNA methylation inhibitors L-ethionine and 5-azacytidine suggests the presence of cytosine methylation sites within CcAdoMetS gene. During the cell cycle, both the transcript and protein levels of CcAdoMetS peaked at the G1 phase. L- ethionine was able to delay the cell cycle at the entry of S phase. A cell cycle delay at the exit of G2/M phase was induced by 5-azacytidine. Conclusion: The present study demonstrates a major role of AdoMet-mediated DNA methylation in the regulation of cell proliferation and that the CcAdoMetS gene is itself methylated

    Adolescents’ responses to the promotion and flavouring of e-cigarettes

    Get PDF
    Objectives The purpose of the study is to examine adolescents’ awareness of e-cigarette marketing and investigate the impact of e-cigarette flavour descriptors on perceptions of product harm and user image. Methods Data come from the 2014 Youth Tobacco Policy Survey, a cross-sectional in-home survey conducted with 11–16 year olds across the UK (n = 1205). Adolescents’ awareness of e-cigarette promotion, brands, and flavours was assessed. Perceptions of product harm, and likely user of four examples of e-cigarette flavours was also examined. Results Some participants had tried e-cigarettes (12 %) but regular use was low (2 %) and confined to adolescents who had also smoked tobacco. Most were aware of at least one promotional channel (82 %) and that e-cigarettes came in different flavours (69 %). Brand awareness was low. E-cigarettes were perceived as harmful (M = 3.54, SD = 1.19) but this was moderated by product flavours. Fruit and sweet flavours were perceived as more likely to be tried by young never smokers than adult smokers trying to quit (p < 0.001). Conclusions There is a need to monitor the impact of future market and regulatory change on youth uptake and perceptions of e-cigarettes

    Aharonov-Bohm interference in topological insulator nanoribbons

    Full text link
    Topological insulators represent novel phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface and verified by angle-resolved photoemission spectroscopy experiments. Here, we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2Se3 nanoribbons. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coverage of two-dimensional electrons on the entire surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation and its temperature dependence demonstrate the robustness of these electronic states. Our results suggest that topological insulator nanoribbons afford novel promising materials for future spintronic devices at room temperature.Comment: 5 pages, 4 figures, RevTex forma

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine

    The Ratio and Concentration of Two Monoterpenes Mediate Fecundity of the Pinewood Nematode and Growth of Its Associated Fungi

    Get PDF
    The pinewood nematode (PWN) Bursaphelenchus xylophilus, vectored primarily by the sawyer beetle, Monochamus alternatus, is an important invasive pest and causal agent of pine wilt disease of Chinese Masson pine, Pinus massoniana. Previous work demonstrated that the ratios and concentrations of α-pinene∶β-pinene differed between healthy trees and those trees containing blue-stain fungus (and M. alternatus pupae). However, the potential influence of the altered monoterpene ratios and concentrations on PWN and associated fungi remained unknown. Our current results show that low concentrations of the monoterpenes within petri dishes reduced PWN propagation, whereas the highest concentration of the monoterpenes increased PWN propagation. The propagation rate of PWN treated with the monoterpene ratio representative of blue-stain infected pine (α-pinene∶β-pinene = 1∶0.8, 137.6 mg/ml) was significantly higher than that (α-pinene∶β-pinene = 1∶0.1, 137.6 mg/ml) representative of healthy pines or those damaged by M. alternatus feeding, but without blue stain. Furthermore, inhibition of mycelial growth of associated fungi increased with the concentration of the monoterpenes α-pinene and β-pinene. Additionally, higher levels of β-pinene (α-pinene∶β-pinene = 1∶0.8) resulted in greater inhibition of the growth of the associated fungi Sporothrix sp.2 and Ophiostoma ips strains, but had no significant effects on the growth of Sporothrix sp.1, which is the best food resource for PWN. These results suggest that host monoterpenes generally reduce the reproduction of PWN. However, PWN utilizes high monoterpene concentrations and native blue-stain fungus Sporothrix sp.1 to improve its own propagation and overcome host resistance, which may provide clues to understanding the ecological mechanisms of PWN's successful invasion
    corecore