14 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Leisure time activities in adolescence in the presence of susceptibility genes for obesity: risk or resilience against overweight in adulthood? The HUNT study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environment, health behavior, and genetic background are important in the development of obesity. Adolescents spend substantial part of daily leisure time on cultural and social activities, but knowledge about the effects of participation in such activities on weight is limited.</p> <p>Methods</p> <p>A number of 1450 adolescents from the Norwegian HUNT study (1995–97) were followed-up in 2006–08 as young adults. Phenotypic data on lifestyle and anthropometric measures were assessed using questionnaires and standardized clinical examinations. Genotypic information on 12 established obesity-susceptibility loci were available for analyses. Generalized estimating equations were used to examine the associations between cultural and social activities in adolescence and adiposity measures in young adulthood. In addition, interaction effects of a genetic predisposition score by leisure time activities were tested.</p> <p>Results</p> <p>In girls, participation in <it>cultural</it> activities was negatively associated with waist circumference (WC) (B = −0.04, 95%CI: -0.08 to −0.00) and with waist-hip ratio (WHR) (B = −0.058, 95%CI: -0.11 to −0.01). However, participation in <it>social</it> activities was positively associated with WC (B = 0.040, CI: 0.00 to 0.08) in girls and with BMI (B = 0.027, CI: 0.00 to 0.05) in boys. The effect of the obesity-susceptibility genetic variants on anthropometric measures was lower in adolescents with high participation in cultural activities compared to adolescents with low participation.</p> <p>Conclusion</p> <p>This study suggests that the effects of cultural activities on body fat are different from the effects of participation in social activities. The protective influence of cultural activities in female adolescents against overweight in adulthood and their moderating effect on obesity-susceptibility genes suggest that even cultural activities may be useful in public health strategies against obesity.</p

    Iron Binding at Specific Sites within the Octameric HbpS Protects Streptomycetes from Iron-Mediated Oxidative Stress

    Get PDF
    <p>The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron-and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide-and iron-based oxidative stress.</p>
    corecore