49 research outputs found

    Ecomorphological diversity of Australian tadpoles

    Get PDF
    Ecomorphology is the association between an organism’s morphology and its ecology. Larval anuran amphibians (tadpoles) are classified into distinct ecomorphological guilds based upon morphological features and observations of their ecology. The extent to which guilds comprise distinct morphologies resulting from convergent evolution, the degree of morphological variability within each guild, and the degree of continuity in shape between guilds has not previously been examined in a phylogenetically-informed statistical framework. Here we examine tadpole ecomorphological guilds at a macroevolutionary scale by examining morphological diversity across the Australian continent. We use ecological data to classify species to guilds, and geometric morphometrics to quantify body shape in the tadpoles of 188 species, 77% of Australian frog diversity. We find that the ecomorphological guilds represented by Australian species are morphologically distinct, but there is substantial morphological variation associated with each guild, and all guilds together form a morphological continuum. However in a phylogenetic comparative context there is no significant difference in body shape among guilds. We also relate the morphological diversity of the Australian assemblage of tadpoles to a global sample and demonstrate that ecomorphological diversity of Australian tadpoles is limited with respect to worldwide species. Our results demonstrate that general patterns of ecomorphological variation are upheld in Australian tadpoles, but tadpole body shape is more variable and possibly generalist than generally appreciated.Emma Sherratt, Marion Anstis, J. Scott Keog

    Evidence for concerted and mosaic brain evolution in dragon lizards

    Get PDF
    The brain plays a critical role in a wide variety of functions including behaviour, perception, motor control, and homeostatic maintenance. Each function can undergo different selective pressures over the course of evolution, and as selection acts on the outputs of brain function, it necessarily alters the structure of the brain. Two models have been proposed to explain the evolutionary patterns observed in brain morphology. The concerted brain evolution model posits that the brain evolves as a single unit and the evolution of different brain regions are coordinated. The mosaic brain evolution model posits that brain regions evolve independently of each other. It is now understood that both models are responsible for driving changes in brain morphology; however, which factors favour concerted or mosaic brain evolution is unclear. Here, we examined the volumes of the 6 major neural subdivisions across 14 species of the agamid lizard genus Ctenophorus (dragons). These species have diverged multiple times in behaviour, ecology, and body morphology, affording a unique opportunity to test neuroevolutionary models across species. We assigned each species to an ecomorph based on habitat use and refuge type, then used MRI to measure total and regional brain volume. We found evidence for both mosaic and concerted brain evolution in dragons: concerted brain evolution with respect to body size, and mosaic brain evolution with respect to ecomorph. Specifically, all brain subdivisions increase in volume relative to body size, yet the tectum and rhombencephalon also show opposite patterns of evolution with respect to ecomorph. Therefore, we find that both models of evolution are occurring simultaneously in the same structures in dragons, but are only detectable when examining particular drivers of selection. We show that the answer to the question of whether concerted or mosaic brain evolution is detected in a system can depend more on the type of selection measured than on the clade of animals studied. (C) 2017 S. Karger AG, Base

    Labeling Preschoolers as Learning Disabled: A Cautionary Position

    Get PDF
    The purpose of this article is to explore the issues concerning the adaptation of school-based service delivery concepts for use in early childhood special education programs. The use of categorical labels for determining eligibility for preschool children is not required by law—and may be detrimental. The following concerns are discussed: (a) definitional issues in learning disabilities versus low achievement, (b) the dangers of labeling and low expectation sets, (c) repeated failure to demonstrate movement through a continuum of services (particularly to least restrictive environments), and (d) the efficacy of early intervention and school-based special services for those with mild or suspected developmental disabilities. Research is reviewed concerning definitional and assessment issues utilizing learning disabilities as a construct. Alternatives for describing the characteristics of young children who are significantly at risk or developmentally delayed are provided.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Molecular phylogeny of viviparous Australian elapid snakes: Affinities of Echiopsis atriceps (Storr, 1980) and Drysdalia coronata (Schlegel, 1837), with description of a new genus

    No full text
    The rare Australian venomous elapid snake 'Echiopsis' atriceps has been the subject of considerable taxonomic instability with the five known specimens assigned to four genera by various authorities. Phylogenetic affinities of the rare Elapognathus minor also are poorly understood and have been the subject of some disagreement. To examine the phylogenetic affinities of these two rare taxa, a molecular data set comprising 1680 base pairs of mtDNA was assembled from a representative of each of the terrestrial Australian viviparous elapid genera and two species of Drysdalia, a genus about which there also has been phylogenetic controversy. A total of 936 base pairs of 12S rRNA, 454 base pairs of 16S rRNA and 290 base pairs of cytochrome b mtDNA were sequenced for 15 species. The Asian elapid Naja naja was used as the outgroup. These mtDNA regions provided 195, 38 and 72 parsimony informative sites, respectively, for a total of 315 parsimony informative characters. Unweighted phylogenetic analyses were performed under both parsimony and neighbour-joining criteria. Parsimony analyses of the unweighted, combined data set resulted in a single fully resolved most parsimonious tree 1225 steps long. The neighbour-joining tree differed by only a single weakly supported branch. These data strongly support a sister group relationship between 'Echiopsis' atriceps and the Australian broadheaded snakes of the genus Hoplocephalus with a bootstrap value of 99%. Templeton tests soundly reject all previous taxonomic arrangements for this species. Our data also strongly support a sister group relationship between Elapognathus minor and Drysdalia coronata with a bootstrap value of 98%. Importantly, Drysdalia coronata and Drysdalia coronoides do not form a monophyletic group, supporting some previous studies. Based on our results, we allocate 'Echiopsis' atriceps to a new monotypic genus and re-describe Elapognathus to include 'Drysdalia' coronata

    Evolution and maintenance of colour pattern polymorphism in Liopholis (Squamata : Scincidae)

    No full text
    We examined the evolution and maintenance of colour pattern polymorphism in an Australian lineage of scincid lizards, the genus Liopholis. Liopholis comprises 11 species, with representatives in both the temperate zone and arid zone. Specimens from all major Australian museums were examined to characterise colour pattern polymorphism within Liopholis, and investigate geographic variation in the relative abundance of morphs within polymorphic species. We used a previously published phylogeny for Liopholis to investigate the evolution and maintenance of colour pattern polymorphism within the group. Five species were found to exhibit colour pattern polymorphism (L. margaretae margaretae Storr, L. m. personata Storr, L. montana Donnellan et al., L. multiscutata Mitchell & Behrndt, L. pulchra Werner, L. whitii Lacépède), with six species being monomorphic (L. guthega Donnellan et al., L. inornata Rosén, L. kintorei Stirling & Zietz, L. modesta Storr, L. slateri Storr, L. striata Sternfeld). Three colour morphs occur in L. whitii, with the relative abundance of each varying significantly among latitudes. The patterned morph is most common, while the incidence of the plain-back morph decreases at latitudes higher than 35°S. The L. whitii patternless morph occurs only within a narrow latitudinal band (34–38°S). In L. multiscutata, the relative abundance of the patterned (~89–93%) and patternless morph (~7–11%) is consistent across regions, except for the Nullarbor Plain region where the patternless morph is more common (~39%). Our analyses suggest a single origin of colour pattern polymorphism in Liopholis, followed by the subsequent loss of polymorphism on four occasions. The secondary loss of polymorphism might be associated with climate or habitat, possibly as the result of shifts into the arid zone or alpine regions of Australia. This study provides the necessary framework for future studies of colour pattern polymorphism in Liopholis.David G. Chapple, Mark N. Hutchinson, Brad Maryan, Mike Plivelich, Jennifer A. Moore and J. Scott Keog

    What are the consequences of being left-clawed in a predominantly right-clawed fiddler crab?

    No full text
    Male fiddler crabs (genus Uca) have an enlarged major claw that is used during fights. In most species, 50% of males have a major claw on the left and 50% on the right. In Uca vocans vomeris, however, less than 1.4% of males are left-clawed. Fights between opponents with claws on the same or opposite side result in different physical alignment of claws, which affects fighting tactics. Left-clawed males mainly fight opposite-clawed opponents, so we predicted that they would be better fighters due to their relatively greater experience in fighting opposite-clawed opponents. We found, however, that (i) a left-clawed male retains a burrow for a significantly shorter period than a size-matched right-clawed male, (ii) when experimentally displaced from their burrow, there is no difference in the tactics used by left- and right-clawed males to obtain a new burrow; however, right-clawed males are significantly more likely to initiate fights with resident males, and (iii) right-clawed residents engage in significantly more fights than left-clawed residents. It appears that left-clawed males are actually less likely to fight, and when they do fight they are less likely to win, than right-clawed males. The low-level persistence of left-clawed males is therefore unlikely to involve a frequency-dependent advantage associated with fighting experience

    Semantic model for artificial intelligence based on molecular computing

    Get PDF
    In this work, a new DNA-based semantic model is proposed and described theoretically. This model, referred to as semantic model based on molecular computing (SMC) has the structure of a graph formed by the set of all attribute-value pairs contained in the set of represented objects, plus a tag node for each object. Attribute layers composed of attribute values then line up. Each path in the network, from an initial object-representing tag node to a terminal node represents the object named on the tag. Application of the model to a reasoning system was proposed, via virtual DNA operation. On input, object-representing dsDNAs will be formed via parallel self-assembly, from encoded ssDNAs representing (value, attribute)-pairs (nodes), as directed by ssDNA splinting strands representing relations (edges) in the network. The computational complexity of the implementation is estimated via simple simulation, which indicates the advantage of the approach over a simple sequential model

    Amyloidosis complicating cystic fibrosis.

    No full text
    Two patients with cystic fibrosis developed acute onset nephrotic syndrome and died within three months of presentation. Examination of renal biopsy specimens indicated amyloid. The onset of proteinuria or a fall in baseline renal function should alert the physician to this rare complication

    Clinical and radiographic evaluation of Wilson osteotomy for hallux valgus

    No full text
    Thirty-two Wilson osteotomies (26 patients) were evaluated after a mean follow-up time of 20 months. According to the classification of Bonney and MacNab, there were 90% good and excellent results. There was no correlation between the patient's appraisal of the result and the clinical result based on objective, functional, and radiographic data. The occurrence of metatarsalgia or callosities did not correlate with shortening or angulation. If there was a tendency to recurrence, there was a greater loss of correction with a longer duration of follow-up. In addition, patients over 50 seemed to have a greater tendency to recurrence than younger patients.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore