300 research outputs found
Production of O(1D) following electron impact on CO2
We have studied the excitation of metastable O(1D) following dissociative excitation of CO2 in the electron impact energy range from threshold to 400 eV. A solid Ne matrix at ∼20 K forms the heart of the detector. This is sensitive to the metastable species through the formation of excited excimers (NeO*), The resultant excimer radiation is readily detected, providing a means of measuring the production of the metastables. Using a pulsed electron beam and time-of-flight techniques, we have measured the O(1D) kinetic energy spectrum and its relative production cross sections as a function of electron impact energy. Threshold energy data are used to gain information about the excitation channels involved. In addition, an emission excitation function for the red photons, emitted in coincidence with the exciting electron pulse, has been measured in the 0–400 eV energy range
Atomic Hole Doping of Graphene
Graphene is an excellent candidate for the next generation of electronic
materials due to the strict two-dimensionality of its electronic structure as
well as the extremely high carrier mobility. A prerequisite for the development
of graphene based electronics is the reliable control of the type and density
of the charge carriers by external (gate) and internal (doping) means. While
gating has been successfully demonstrated for graphene flakes and epitaxial
graphene on silicon carbide, the development of reliable chemical doping
methods turns out to be a real challenge. In particular hole doping is an
unsolved issue. So far it has only been achieved with reactive molecular
adsorbates, which are largely incompatible with any device technology. Here we
show by angle-resolved photoemission spectroscopy that atomic doping of an
epitaxial graphene layer on a silicon carbide substrate with bismuth, antimony
or gold presents effective means of p-type doping. Not only is the atomic
doping the method of choice for the internal control of the carrier density. In
combination with the intrinsic n-type character of epitaxial graphene on SiC,
the charge carriers can be tuned from electrons to holes, without affecting the
conical band structure
Pathophysiology of the endothelin system - lessons from genetically manipulated animal models
Shortly after discovery of ET-1 in 1988, the entire endothelin system was characterized. The endothelin system consists of the three peptides ET-1, ET-2 and ET-3, their G-protein-coupled receptors endothelin receptor A and B (ETRA and ETRB) and the two endothelin-converting enzymes (ECE-1 and ECE-2). Genetically modified animal models are an important tool in biomedical research. Here we describe the key findings obtained from genetically modified animal models either over-expressing compounds of the ET system or lacking these compounds (knockout mice). Results from the different transgenic and knockout models disclose that the ET system plays a major role in embryonic development. Two ET system-dependent neural crest-driven developmental pathways become obvious: one of them being an ET-1/ETAR axis, responsible for cardio-renal function and development as well as cranial development; the other seems to be an ET-3/ETBR mediated signalling pathway. Mutations within this axis are associated with disruptions in epidermal melanocytes and enteric neurons. These findings led to the discovery of similar findings in humans with Hirschsprung disease. In adult life the ET system is most important in the cardiovascular system and plays a role in fibrotic remodelling of the heart, lung and kidney as well as in the regulation of water and salt excretion
Induction of Protective CD4+ T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses
The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity
Correlating Raman Spectral Signatures with Carrier Mobility in Epitaxial Graphene: A Guide to Achieving High Mobility on the Wafer Scale
We report a direct correlation between carrier mobility and Raman topography
of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall
mobility of material on the Si-face of SiC [SiC(0001)] is not only highly
dependent on thickness uniformity but also on monolayer strain uniformity. Only
when both thickness and strain are uniform over a significant fraction (> 40%)
of the device active area does the mobility exceed 1000 cm2/V-s. Additionally,
we achieve high mobility epitaxial graphene (18,100 cm2/V-s at room
temperature) on the C-face of SiC [SiC(000-1)] and show that carrier mobility
depends strongly on the graphene layer stacking. These findings provide a means
to rapidly estimate carrier mobility and provide a guide to achieve very high
mobility in epitaxial graphene. Our results suggest that ultra-high mobilities
(>50,000 cm2/V-s) are achievable via the controlled formation of uniform,
rotationally faulted epitaxial graphene.Comment: 13 pages including supplimental material. Submitted to Nature
Materials 2/23/200
Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages
Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW
264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain preexposed
macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in futur
Chemically-induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances
We report a first-principles based study of mesoscopic quantum transport in
chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence
of quasibound states related to boron impurities results in mobility gaps as
large as 1 eV, driven by strong electron-hole asymmetrical backscattering
phenomena. This phenomenon opens new ways to overcome current limitations of
graphene-based devices through the fabrication of chemically-doped graphene
nanoribbons with sizes within the reach of conventional lithography.Comment: Nano Letters (in press
AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5
<p>Abstract</p> <p>Background</p> <p>Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two <it>Plasmodium falciparum </it>antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated.</p> <p>Methods</p> <p>Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline.</p> <p>Results</p> <p>AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses.</p> <p>Conclusion</p> <p>Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.</p
A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells
The most effective strategy for protection against intracellular infections such as Leishmania is
vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live
vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very
efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to
efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
- …