5 research outputs found

    Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing

    Get PDF
    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates

    Catecholaminergic depletion in nucleus accumbens enhances trace conditioning

    Get PDF
    Purpose: To examine the effect of dopamine depletion in nucleus accumbens on trace conditioning; to distinguish the role of core and shell sub-regions, as far as possible. Material/Methods: 6-hydroxydopamine was used to lesion dopamine terminals within the core and shell accumbens. Experiment 1 assessed conditioning to a tone conditioned stimulus that had previously been paired with footshock (unconditioned stimulus) at a 30s trace interval. Experiment 2 subsequently assessed contiguous conditioning (at 0s trace) using a light conditioned stimulus directly followed by the unconditioned stimulus. Results: Both sham and shell-lesioned animals showed the normal trace effect of reduced conditioning to the trace conditioned stimulus but 6-hydroxydopamine injections targeted on the core subregion of the nucleus accumbens abolished this effect and enhanced conditioning to the trace conditioned stimulus. However, the depletion produced by this lesion placement extended to the shell. In Experiment 2 (at 0s trace), there was no effect of either lesion placement as all animals showed comparable levels of conditioning to the light conditioned stimulus. Neurochemical analysis across core, shell and comparison regions showed some effects on noradrenalin as well as dopamine. Conclusions: The pattern of changes in noradrenalin did not systematically relate to the observed behavioural changes after core injections. The pattern of changes in dopamine suggested that depletion in core mediated the increased conditioning to the trace conditioned stimulus seen in the present study. However, the comparison depletion restricted to the shell subregion was less substantial, and a role for secondarily affected brain regions cannot be excluded

    Catecholaminergic depletion in nucleus accumbens enhances trace conditioning

    No full text
    ABSTRACT Purpose: To examine the effect of dopamine depletion in nucleus accumbens on trace conditioning; to distinguish the role of core and shell sub-regions, as far as possible. Material/Methods: 6-hydroxydopamine was used to lesion dopamine terminals within the core and shell accumbens. Experiment 1 assessed conditioning to a tone conditioned stimulus that had previously been paired with footshock (unconditioned stimulus) at a 30s trace interval. Experiment 2 subsequently assessed contiguous conditioning (at 0s trace) using a light conditioned stimulus directly followed by the unconditioned stimulus. Results: Both sham and shell-lesioned animals showed the normal trace effect of reduced conditioning to the trace conditioned stimulus but 6-hydroxydopamine injections targeted on the core subregion of the nucleus accumbens abolished this effect and enhanced conditioning to the trace conditioned stimulus. However, the depletion produced by this lesion placement extended to the shell. In Experiment 2 (at 0s trace), there was no effect of either lesion placement as all animals showed comparable levels of conditioning to the light conditioned stimulus. Neurochemical analysis across core, shell and comparison regions showed some effects on noradrenalin as well as dopamine. Conclusions: The pattern of changes in noradrenalin did not systematically relate to the observed behavioural changes after core injections. The pattern of changes in dopamine suggested that depletion in core mediated the increased conditioning to the trace conditioned stimulus seen in the present study. However, the comparison depletion restricted to the shell subregion was less substantial, and a role for secondarily affected brain regions cannot be excluded
    corecore