1,202 research outputs found

    The Evolution of Population III and Extremely Metal-Poor Binary Stars

    Full text link
    Numerical simulations have now shown that Population III (Pop III) stars can form in binaries and small clusters and that these stars can be in close proximity to each other. If so, they could be subject to binary interactions such as mass exchange that could profoundly alter their evolution, ionizing UV and Lyman-Werner (LW) photon emission and explosion yields, with important consequences for early cosmological reionization and chemical enrichment. Here we investigate the evolution of Pop III and extremely metal-poor binary stars with the MESA code. We find that interactions ranging from stable mass transfer to common envelope evolution can occur in these binaries for a wide range of mass ratios and initial separations. Mass transfer can nearly double UV photon yields in some of these binaries with respect to their individual stars by extending the life of the companion star, which in turn can enhance early cosmological reionization but also suppress the formation of later generations of primordial stars. Binary interactions can also have large effects on the nucleosynthetic yields of the stars by promoting or removing them into or out of mass ranges for specific SN types. We provide fits to total photon yields for the binaries in our study for use in cosmological simulations

    Metallic surface states in a correlated d-electron topological Kondo insulator candidate FeSb2

    Full text link
    The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI) with exotic ground states. However, the scarcity of model TKI material families leaves difficulties in disentangling key ingredients from irrelevant details. Here we use angle-resolved photoemission spectroscopy (ARPES) to study FeSb2, a correlated d-electron KI candidate that also exhibits a low temperature resistivity saturation. On the (010) surface, we find a rich assemblage of metallic states with two-dimensional dispersion. Measurements of the bulk band structure reveal band renormalization, a large temperature-dependent band shift, and flat spectral features along certain high symmetry directions, providing spectroscopic evidence for strong correlations. Our observations suggest that exotic insulating states resembling those in SmB6 and YbB12 may also exist in systems with d instead of f electrons

    DNA origami-designed 3D phononic crystals

    Get PDF
    Moulding the flow of phononic waves in three-dimensional (3D) space plays a critical role in controlling the sound and thermal properties of matter. To this end, 3D phononic crystals (PnCs) have been considered the gold standard because their complete phononic bandgap (PnBG) enables omnidirectional inhibition of phononic wave propagation. Nevertheless, achieving a complete PnBG in the high-frequency regime is still challenging, as attaining the correspondingly demanded mesoscale 3D crystals consisting of continuous frame networks with conventional fabrications is difficult. Here, we report that a DNA origami-designed-3D crystal can serve as a hypersonic 3D PnC exhibiting the widest complete PnBG. DNA origami crystallization can unprecedentedly provide 3D crystals such that continuous frame 3D crystals at the mesoscale are realizable. Furthermore, their lattice symmetry can be molecularly programmed to be at the highest level in a hierarchy of symmetry groups and numbers, which can facilitate the widening of the PnBG. More importantly, conformal silicification can render DNA origami-3D crystals rigid. Overall, we predict that the widest hypersonic PnBG can be achieved with DNA origami-designed 3D crystals with optimal lattice geometry and silica fraction; our work can provide a blueprint for the design and fabrication of mesoscale 3D PnCs with a champion PnBG

    Three‐dimensional Zn O / S i broom‐like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102038/1/pssa201329214.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102038/2/pssa201329214-sm-0001-SupFigs.pd

    Is sea-ice-driven Eurasian cooling too weak in models?

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: The FACTS and CESM simulations are freely available and were obtained from the following repositories: https://www.esrl.noaa.gov/psd/repository/facts and https://www.cesm.ucar.edu/projects/community-projects/LENS

    Spatial-temporal Characteristics and Source Apportionment of Ambient VOCs in Southeast Mountain Area of China

    Get PDF
    Seasonal variations and sources of ambient volatile organic compounds (VOCs) were conducted at the county and rural sites in a mountain area of southeastern China. The results showed that the pattern of VOC concentrations was dominated by oxygenated VOCs (37.6%) and alkanes (25.8%), followed by halocarbons (16.8%), alkenes (11.9%), aromatics (6.87%), and alkynes (1.04%). Based on the OH radical loss rate (LOH) and ozone formation potential (OFP) analysis, alkenes had the highest chemical activity, especially the contribution of isoprene in rural areas. Aromatics contributed the most to secondary organic aerosols (SOA) formation in both county and rural areas. Source apportionment of VOCs were quantified by the positive matrix factorization (PMF) model, including industrial emissions and combustion burning (30.1% and 43.3% in the county and rural areas, respectively) and vehicle exhausts (30.3% and 10.8%), followed by solvent usage (17.1% and 5.2%), liquid petroleum gas (LPG) usage and fuel evaporation (14.2% and 10.0%), and biogenic source (8.3% and 30.6%). The backward air trajectories showed that air mass in spring was mainly originated from the intercity transmission, while the air clusters in autumn came from the northern areas through long-range transport. The study was helpful to understand the pollution characteristics in the mountainous area and provides a scientific basis for local O3 and PM2.5 pollution control
    corecore