178 research outputs found

    Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines

    Get PDF
    The extracellular matrix glycoprotein tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al (1996) Br J Cancer 74: 999-1004). To define regulation of TN further and investigate its function in ovarian cancer, a range of cell line models were studied. Concentrations of secreted TN in media from cultures of ovarian fibroblast cell lines were at least 100-fold greater than from carcinoma cell lines. Evidence for paracrine regulation of TN secretion was obtained by co-culture of carcinoma cells with fibroblast cells wherein secretion into the media was greater than from fibroblasts alone. Transforming growth factor (TGF)- beta 1, insulin-like growth factor (IGF)-II and progesterone all stimulated TN secretion while human choriogonadotropin (hCG), follicle-stimulating hormone (FSH) and gamma-interferon inhibited secretion. TGF-beta 1 produced the greatest stimulation of TN in cultured fibroblasts and its cc-expression with TN was examined in primary ovarian tumours, There was a significant association between the presence of moderate-strong expression of TN and TGF-beta 1. Evidence for TN having a functional role in ovarian carcinoma was obtained from adhesion and migration assays. The PE01, PE04, SKOV-3 and 59M cell lines all demonstrated marked adhesion to plastic coated with TN relative to the control protein bovine serum albumin (BSA) and expressed alpha 2 beta 1 and alpha 3 beta 1 integrins, The SKOV-3 cell line migrated more rapidly through TN than through BSA indicating that TN can facilitate migration of ovarian carcinoma cells

    Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic Stem Cells

    Get PDF
    Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration

    Genetic Impact of a Severe El NiΓ±o Event on GalΓ‘pagos Marine Iguanas (Amblyrhynchus cristatus)

    Get PDF
    The El NiΓ±o-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El NiΓ±o warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El NiΓ±o in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997–1998 El NiΓ±o altered the genetic composition of GalΓ‘pagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El NiΓ±o warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El NiΓ±o event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (Ne) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El NiΓ±o event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El NiΓ±o must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations

    Heart rate variability (HRV) and muscular system activity (EMG) in cases of crash threat during simulated driving of a passenger car

    Full text link
    Objectives: The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. Materials and Methods: The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. Results: As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Conclusion: Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG)

    Translational research into gut microbiota: new horizons on obesity treatment: updated 2014

    Get PDF
    Obesity is currently a pandemic of worldwide proportions affecting millions of people. Recent studies have proposed the hypothesis that mechanisms not directly related to the human genome could be involved in the genesis of obesity, due to the fact that, when a population undergoes the same nutritional stress, not all individuals present weight gain related to the diet or become hyperglycemic. The human intestine is colonized by millions of bacteria which form the intestinal flora, known as gut flora. Studies show that lean and overweight human may present a difference in the composition of their intestinal flora; these studies suggest that the intestinal flora could be involved in the development of obesity. Several mechanisms explain the correlation between intestinal flora and obesity. The intestinal flora would increase the energetic extraction of non-digestible polysaccharides. In addition, the lipopolysaccharide from intestinal flora bacteria could trigger a chronic sub-clinical inflammatory process, leading to obesity and diabetes. Another mechanism through which the intestinal flora could lead to obesity would be through the regulation of genes of the host involved in energy storage and expenditure. In the past five years data coming from different sources established causal effects between intestinal microbiota and obesity/insulin resistance, and it is clear that this area will open new avenues of therapeutic to obesity, insulin resistance and DM2

    Theory and practice of social norms interventions: eight common pitfalls.

    Get PDF
    BACKGROUND: Recently, Global Health practitioners, scholars, and donors have expressed increased interest in "changing social norms" as a strategy to promote health and well-being in low and mid-income countries (LMIC). Despite this burgeoning interest, the ability of practitioners to use social norm theory to inform health interventions varies widely. MAIN BODY: Here, we identify eight pitfalls that practitioners must avoid as they plan to integrate a social norms perspective in their interventions, as well as eight learnings. These learnings are: 1) Social norms and attitudes are different; 2) Social norms and attitudes can coincide; 3) Protective norms can offer important resources for achieving effective social improvement in people's health-related practices; 4) Harmful practices are sustained by a matrix of factors that need to be understood in their interactions; 5) The prevalence of a norm is not necessarily a sign of its strength; 6) Social norms can exert both direct and indirect influence; 7) Publicising the prevalence of a harmful practice can make things worse; 8) People-led social norm change is both the right and the smart thing to do. CONCLUSIONS: As the understanding of how norms evolve in LMIC advances, practitioners will develop greater understanding of what works to help people lead change in harmful norms within their contexts. Awareness of these pitfalls has helped several of them increase the effectiveness of their interventions addressing social norms in the field. We are confident that others will benefit from these reflections as well

    Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    Get PDF
    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella

    The Effects of Copper Pollution on Fouling Assemblage Diversity: A Tropical-Temperate Comparison

    Get PDF
    BACKGROUND: The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources. METHODOLOGY/PRINCIPAL FINDINGS: To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect. CONCLUSIONS/SIGNIFICANCE: Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship
    • …
    corecore