106 research outputs found

    ALMA Observations of the T Tauri Binary System AS 205: Evidence for Molecular Winds and/or Binary Interactions

    Get PDF
    In this study, we present high-resolution millimeter observations of the dust and gas disk of the T Tauri star AS 205 N and its companion, AS 205 S, obtained with the Atacama Large Millimeter Array. The gas disk around AS 205 N, for which infrared emission spectroscopy demonstrates significant deviations from Keplerian motion that has been interpreted as evidence for a disk wind (Pontoppidan et al. 2011; Bast et al. 2011), also displays significant deviations from Keplerian disk emission in the observations presented here. Detections near both AS 205 N and S are obtained in 1.3 mm continuum, 12CO 2-1, 13CO 2-1 and C18O 2-1. The 12CO emission is extended up to 2 arcsec from AS 205N, and both 12CO and 13CO display deviations from Keplerian rotation at all angular scales. Two possible explanations for these observations hold up best to close scrutiny - tidal interaction with AS 205 S or disk winds (or a combination of the two), and we discuss these possibilities in some detail.Comment: accepted by The Astrophysical Journa

    Change of Scaling and Appearance of Scale-Free Size Distribution in Aggregation Kinetics by Additive Rules

    Full text link
    The idealized general model of aggregate growth is considered on the basis of the simple additive rules that correspond to one-step aggregation process. The two idealized cases were analytically investigated and simulated by Monte Carlo method in the Desktop Grid distributed computing environment to analyze "pile-up" and "wall" cluster distributions in different aggregation scenarios. Several aspects of aggregation kinetics (change of scaling, change of size distribution type, and appearance of scale-free size distribution) driven by "zero cluster size" boundary condition were determined by analysis of evolving cumulative distribution functions. The "pile-up" case with a \textit{minimum} active surface (singularity) could imitate piling up aggregations of dislocations, and the case with a \textit{maximum} active surface could imitate arrangements of dislocations in walls. The change of scaling law (for pile-ups and walls) and availability of scale-free distributions (for walls) were analytically shown and confirmed by scaling, fitting, moment, and bootstrapping analyses of simulated probability density and cumulative distribution functions. The initial "singular" \textit{symmetric} distribution of pile-ups evolves by the "infinite" diffusive scaling law and later it is replaced by the other "semi-infinite" diffusive scaling law with \textit{asymmetric} distribution of pile-ups. In contrast, the initial "singular" \textit{symmetric} distributions of walls initially evolve by the diffusive scaling law and later it is replaced by the other ballistic (linear) scaling law with \textit{scale-free} exponential distributions without distinctive peaks. The conclusion was made as to possible applications of such approach for scaling, fitting, moment, and bootstrapping analyses of distributions in simulated and experimental data.Comment: 37 pages, 16 figures, 1 table; accepted preprint version after comments of reviewers, Physica A: Statistical Mechanics and its Applications (2014

    Multidimensional Profiles of Health Status: An Application of the Grade of Membership Model to the World Health Survey

    Get PDF
    BACKGROUND: The World Health Organization (WHO) conducted the World Health Survey (WHS) between 2002 and 2004 in 70 countries to provide cross-population comparable data on health, health-related outcomes and risk factors. The aim of this study was to apply Grade of Membership (GoM) modelling as a means to condense extensive health information from the WHS into a set of easily understandable health profiles and to assign the degree to which an individual belongs to each profile. PRINCIPAL FINDINGS: This paper described the application of the GoM models to summarize population health status using World Health Survey data. Grade of Membership analysis is a flexible, non-parametric, multivariate method, used to calculate health profiles from WHS self-reported health state and health conditions. The WHS dataset was divided into four country economic categories based on the World Bank economic groupings (high, upper-middle, lower-middle and low income economies) for separate GoM analysis. Three main health profiles were produced for each of the four areas: I. Robust; II. Intermediate; III. Frail; moreover population health, wealth and inequalities are defined for countries in each economic area as a means to put the health results into perspective. CONCLUSIONS: These analyses have provided a robust method to better understand health profiles and the components which can help to identify healthy and non-healthy individuals. The obtained profiles have described concrete levels of health and have clearly delineated characteristics of healthy and non-healthy respondents. The GoM results provided both a useable way of summarising complex individual health information and a selection of intermediate determinants which can be targeted for interventions to improve health. As populations' age, and with limited budgets for additional costs for health care and social services, applying the GoM methods may assist with identifying higher risk profiles for decision-making and resource allocations

    Multidimensional Profiles of Health Status: An Application of the Grade of Membership Model to the World Health Survey

    Get PDF
    BACKGROUND: The World Health Organization (WHO) conducted the World Health Survey (WHS) between 2002 and 2004 in 70 countries to provide cross-population comparable data on health, health-related outcomes and risk factors. The aim of this study was to apply Grade of Membership (GoM) modelling as a means to condense extensive health information from the WHS into a set of easily understandable health profiles and to assign the degree to which an individual belongs to each profile. PRINCIPAL FINDINGS: This paper described the application of the GoM models to summarize population health status using World Health Survey data. Grade of Membership analysis is a flexible, non-parametric, multivariate method, used to calculate health profiles from WHS self-reported health state and health conditions. The WHS dataset was divided into four country economic categories based on the World Bank economic groupings (high, upper-middle, lower-middle and low income economies) for separate GoM analysis. Three main health profiles were produced for each of the four areas: I. Robust; II. Intermediate; III. Frail; moreover population health, wealth and inequalities are defined for countries in each economic area as a means to put the health results into perspective. CONCLUSIONS: These analyses have provided a robust method to better understand health profiles and the components which can help to identify healthy and non-healthy individuals. The obtained profiles have described concrete levels of health and have clearly delineated characteristics of healthy and non-healthy respondents. The GoM results provided both a useable way of summarising complex individual health information and a selection of intermediate determinants which can be targeted for interventions to improve health. As populations' age, and with limited budgets for additional costs for health care and social services, applying the GoM methods may assist with identifying higher risk profiles for decision-making and resource allocations

    In Vivo Human Apolipoprotein E Isoform Fractional Turnover Rates in the CNS

    Get PDF
    Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis

    The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice

    Get PDF
    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone

    Association between a variation in the phosphodiesterase 4D gene and bone mineral density

    Get PDF
    BACKGROUND: Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. METHODS: We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (<0.87 g/cm(2), n = 319) and high (> 1.11 g/cm(2), n = 321) BMD at the lumbar spine. Significant findings were verified in two additional sample collections. RESULTS: Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (<0.91 g/cm(2)) and 138 females with high (>1.04 g/cm(2)) lumbar spine BMD. Odds ratios were 1.5 (P = 0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09). We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. CONCLUSION: This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any member of the PDE4 gene family in human osteoporosis

    Morphological and Pathological Evolution of the Brain Microcirculation in Aging and Alzheimer’s Disease

    Get PDF
    Key pathological hallmarks of Alzheimer’s disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular “dysfunction” compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD
    • …
    corecore