49 research outputs found

    Patients with migraine with aura have increased flow mediated dilation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelium-derived nitric oxide (NO) mediates the arterial dilation following a flow increase (i.e. flow-mediated dilation, FMD), easily assessed in the brachial artery. NO is also involved in cerebral hemodynamics and it is supposed to trigger vascular changes occurring during migraine. This study aimed at investigating whether migraine patients present an altered response to NO also in the peripheral artery system.</p> <p>Methods</p> <p>We enrolled 21 migraineurs (10 with aura [MwA], 11 without aura [MwoA]), and 13 controls. FMD was evaluated with ultrasound in all subjects by measuring the percentage increase of the brachial artery diameter induced by hyperaemia reactive to sustained cuff inflation around the arm above systolic pressure. FMD values were then normalized for shear stress.</p> <p>Results</p> <p>Normalized FMD values were higher in patients with MwA (28.5 10<sup>-2</sup>%.s) than in controls (9.0 10<sup>-2</sup>%.s) and patients with MwoA (13.7 10<sup>-2</sup>%.s) (p < 0.001). FMD was over the median value (19%) in 23.1% of controls, in 45.5% of the MwoA patients, and in 90% of the MwA patients.</p> <p>Conclusions</p> <p>Migraineurs with aura present an excessive arterial response to hyperaemia, likely as an effect of an increased sensitivity to endothelium-derived nitric oxide. This phenomenon observed peripherally might reflect similar characteristics in the cerebral circulation.</p

    Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

    Get PDF
    Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena

    Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria.

    Get PDF
    We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations

    Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria

    Get PDF
    Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ∆pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ∆pH. This phenomenon reveals that from the pH component not ∆pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury

    Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase.

    No full text
    The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression

    Pharmacology of stomoxytachykinin receptor depends on second messenger system

    No full text
    STKR is a neurokinin receptor derived from the stable fly, Stomoxys calcitrans. Insect tachykinin-related peptides, also referred to as "insectatachykinins", produce dose-dependent calcium and cyclic AMP responses in cultured Drosophila melanogaster Schneider 2 (S2) cells that were stably transfected with the cloned STKR cDNA. Pronounced differences in Pharmacology were observed between agonist-induced calcium and cyclic AMP responses. The results indicate that the pharmacological properties of STKR depend on its coupling to a unique second messenger system. Therefore, a model postulating the existence of multiple active receptor conformations is proposed. This article presents the first evidence that an insect peptide receptor with dual coupling properties to second messenger systems can display agonist-dependent functional differences. (C) 2004 Elsevier Inc. All rights reserved.status: publishe
    corecore