2,415 research outputs found

    Évaluation de l’efficacité de l’insecticide Tricel 480 EC comparée à la Deltamétrine et à la Cyperméthrine contre les ravageurs du chou (Brassicacae L. sp.) en milieu paysan dans la région de Yamoussoukro en Côte d’Ivoire

    Get PDF
    Afin decontrôler l’utilisation croissante et non raisonnée de produits phytosanitaires contre les ravageurs des cultures maraîchères, 3 doses du TRIC 480 EC (0,8 L/ha, 1 L/ha et 2 L/ha), ont été testées. Il s’agit dedéterminer la dose optimale d’utilisation pour la réduction efficiente des populations d’insectes ravageurs du chou (Brassicacae L. sp.) comparée à celles de la Deltaméthrine (12g/L) et du Cypermétrine (50g/L), deux formulations de référence utilisées contre les ravageurs du chou en milieu paysan et le témoin non traité. Un dispositif en Split-plot avec trois  répétitions par objet a été utilisé. Les ravageurs prédominants relevéssont les Homoptères (pucerons), les Orthoptères (sautériaux), les larves de Lépidoptères (Plutellaxylostella) et de Diptères. Les 3 doses du TRIC 480 EC permettent de réduire de 80 %, les populations de pucerons etdonc les pertes par la dégénérescence des plants de chou. Contrôle qui est significativement différent de la Deltaméthrine (12g/L) et de la  Cyperméthrine (50g/L) (P = 0,018 < 0,05). La dose de 0,8 L/ha de TRIC 480 EC contre les ravageurs du chou, avec une application hebdomadaire en pulvérisation dès le repiquage jusqu’à une semaine avant les récoltes peut être recommandée aux paysans.Mots-clés : Chou (Brassicacae L. sp.), insectes ravageurs, TRIC 480 EC, Cyperméthrine 50 EC, Deltaméthrine 12 EC, doses efficaces

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    Get PDF
    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with Ssubstitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening

    Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    Get PDF
    Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales

    Current quark mass dependence of nucleon magnetic moments and radii

    Full text link
    A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Nature's fundamental parameters. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons' magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Development of an All-in-One Lentiviral Vector System Based on the Original TetR for the Easy Generation of Tet-ON Cell Lines

    Get PDF
    Lentiviral vectors (LVs) are considered one of the most promising vehicles to efficiently deliver genetic information for basic research and gene therapy approaches. Combining LVs with drug-inducible expression systems should allow tight control of transgene expression with minimal side effect on relevant target cells. A new doxycycline-regulated system based on the original TetR repressor was developed in 1998 as an alternative to the TetR-VP16 chimeras (tTA and rtTA) to avoid secondary effects due to the expression of transactivator domains. However, previously described TetR-based systems required cell cloning and/or antibiotic selection of tetracycline-responsive cells in order to achieve good regulation. In the present manuscript we have constructed a dual Tet-ON system based on two lentiviral vectors, one expressing the TetR through the spleen focus forming virus (SFFV) promoter (STetR) and a second expressing eGFP through the regulatable CMV-TetO promoter (CTetOE). Using these vectors we have demonstrated that the TetR repressor, contrary to the reverse transactivator (rtTA), can be expressed in excess to bind and modulate a high number of TetO operons. We have also showed that this dual vector system can generate regulatable bulk cell lines (expressing high levels of TetR) that are able to modulate transgene expression either by varying doxycycline concentration and/or by varying the amount of CTetOE vector genomes per cell. Based on these results we have developed a new all-in-one lentiviral vector (CEST) driving the expression of TetR through the SFFV promoter and the expression of eGFP through the doxycycline-responsive CMV-TetO operon. This vector efficiently produced Tet-ON regulatable immortalized (293T) and primary (human mesenchymal stem cells and human primary fibroblasts) cells. Bulk doxycycline-responsive cell lines express high levels of the transgene with low amount of doxycycline and are phenotypically indistinct from its parental cells

    Short Stat5-Interacting Peptide Derived from Phospholipase C-β3 Inhibits Hematopoietic Cell Proliferation and Myeloid Differentiation

    Get PDF
    Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN). Our recent study found that phospholipase C (PLC)-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT) accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998) suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies
    corecore