30 research outputs found

    Ras-association domain of sorting nexin 27 is critical for regulating expression of GIRK potassium channels

    Get PDF
    G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-DRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability

    Crystal structure of a Kir3.1-prokaryotic Kir channel chimera

    No full text
    The Kir3.1 K+ channel participates in heart rate control and neuronal excitability through G-protein and lipid signaling pathways. Expression in Escherichia coli has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2 Å. The selectivity filter is identical to the Streptomyces lividans K+ channel within error of measurement (r.m.s.d.<0.2 Å), suggesting that K+ selectivity requires extreme conservation of three-dimensional structure. Multiple K+ ions reside within the pore and help to explain voltage-dependent Mg2+ and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid-body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5-biphosphate-interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore

    The role of G proteins in assembly and function of Kir3 inwardly rectifying potassium channels

    No full text
    Kir3 channels (also known as GIRK channels) are important regulators of electrical excitability in both cardiomyocytes and neurons. Much is known regarding the assembly and function of these channels and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied effectors of heterotrimeric G proteins in general and Gβγ subunits in particular. However, our understanding of the roles of multiple Gβγ binding sites on Kir3 channels is still rudimentary. We discuss potential roles for Gβγ in channel assembly and trafficking in addition to their known role in cellular signaling

    Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease

    No full text
    G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death, which may be important in the pathophysiology of diseases such as epilepsy, Down's syndrome, Parkinson's disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target
    corecore