18 research outputs found

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex

    Effects of Subthalamic Nucleus Lesions and Stimulation upon Corticostriatal Afferents in the 6-Hydroxydopamine-Lesioned Rat

    Get PDF
    Abnormalities of striatal glutamate neurotransmission may play a role in the pathophysiology of Parkinson's disease and may respond to neurosurgical interventions, specifically stimulation or lesioning of the subthalamic nucleus (STN). The major glutamatergic afferent pathways to the striatum are from the cortex and thalamus, and are thus likely to be sources of striatal neuronally-released glutamate. Corticostriatal terminals can be distinguished within the striatum at the electron microscopic level as their synaptic vesicles contain the vesicular glutamate transporter, VGLUT1. The majority of terminals which are immunolabeled for glutamate but are not VGLUT1 positive are likely to be thalamostriatal afferents. We compared the effects of short term, high frequency, STN stimulation and lesioning in 6-hydroxydopamine (6OHDA)-lesioned rats upon striatal terminals immunolabeled for both presynaptic glutamate and VGLUT1. 6OHDA lesions resulted in a small but significant increase in the proportions of VGLUT1-labeled terminals making synapses on dendritic shafts rather than spines. STN stimulation for one hour, but not STN lesions, increased the proportion of synapses upon spines. The density of presynaptic glutamate immuno-gold labeling was unchanged in both VGLUT1-labeled and -unlabeled terminals in 6OHDA-lesioned rats compared to controls. Rats with 6OHDA lesions+STN stimulation showed a decrease in nerve terminal glutamate immuno-gold labeling in both VGLUT1-labeled and -unlabeled terminals. STN lesions resulted in a significant decrease in the density of presynaptic immuno-gold-labeled glutamate only in VGLUT1-labeled terminals. STN interventions may achieve at least part of their therapeutic effect in PD by normalizing the location of corticostriatal glutamatergic terminals and by altering striatal glutamatergic neurotransmission

    PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression

    Get PDF
    Esteban and coworkers describe a novel role for the lipid phosphatase PTEN in synaptic physiology through regulation of AMPA receptors. Interestingly, this appears to be connected to an NMDAR-induced, PDZ-mediated PTEN recruitment to PSD-95

    Assembly of a β2-adrenergic receptor—GluR1 signalling complex for localized cAMP signalling

    Get PDF
    Central noradrenergic signalling mediates arousal and facilitates learning through unknown molecular mechanisms. Here, we show that the β2-adrenergic receptor (β2AR), the trimeric Gs protein, adenylyl cyclase, and PKA form a signalling complex with the AMPA-type glutamate receptor subunit GluR1, which is linked to the β2AR through stargazin and PSD-95 and their homologues. Only GluR1 associated with the β2AR is phosphorylated by PKA on β2AR stimulation. Peptides that interfere with the β2AR–GluR1 association prevent this phosphorylation of GluR1. This phosphorylation increases GluR1 surface expression at postsynaptic sites and amplitudes of EPSCs and mEPSCs in prefrontal cortex slices. Assembly of all proteins involved in the classic β2AR–cAMP cascade into a supramolecular signalling complex and thus allows highly localized and selective regulation of one of its major target proteins

    PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane

    Get PDF
    Supplementary information is available on the Nature Neuroscience website.Despite their low abundance, phosphoinositides are critical regulators of intracellular signaling and membrane compartmentalization. However, little is known of phosphoinositide function at the postsynaptic membrane. Here we show that continuous synthesis and availability of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the postsynaptic terminal is necessary for sustaining synaptic function in rat hippocampal neurons. This requirement was specific for synaptic, but not extrasynaptic, AMPA receptors, nor for NMDA receptors. PIP3 downregulation impaired PSD-95 accumulation in spines. Concomitantly, AMPA receptors became more mobile and migrated from the postsynaptic density toward the perisynaptic membrane within the spine, leading to synaptic depression. Notably, these effects were only revealed after prolonged inhibition of PIP3 synthesis or by direct quenching of this phosphoinositide at the postsynaptic cell. Therefore, we conclude that a slow, but constant, turnover of PIP3 at synapses is required for maintaining AMPA receptor clustering and synaptic strength under basal conditions.This work was supported by grants from the US National Institute of Mental Health (J.A.E. and J.R.M.), the Dana Foundation (J.A.E.) and the Spanish Ministry of Science and Innovation (J.A.E.). M.F.-M. and S.K. are supported by postdoctoral contracts, and M.R. by a predoctoral fellowship, from the Spanish Ministry of Science and Innovation.Peer reviewe

    Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

    No full text
    The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution
    corecore