235 research outputs found

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Allele-specific differences in ryanodine receptor 1 mRNA expression levels may contribute to phenotypic variability in malignant hyperthermia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant hyperthermia (MH) is a dominantly inherited skeletal muscle disorder that can cause a fatal hypermetabolic reaction to general anaesthetics. The primary locus of MH (MHS1 locus) in humans is linked to chromosome 19q13.1, the position of the gene encoding the ryanodine receptor skeletal muscle calcium release channel (RyR1).</p> <p>Methods</p> <p>In this study, an inexpensive allele-specific PCR (AS-PCR) assay was designed that allowed the relative quantification of the two RyR1 transcripts in heterozygous samples found to be susceptible to MH (MHS). Allele-specific differences in RyR1 expression levels can provide insight into the observed variable penetrance and variations in MH phenotypes between individuals. The presence/absence of the H4833Y mutation in <it>RYR</it>1 transcripts was employed as a marker that allowed discrimination between the two alleles.</p> <p>Results</p> <p>In four skeletal muscle samples and two lymphoblastoid cell lines (LCLs) from different MHS patients, the wild type allele was found to be expressed at higher levels than the mutant RyR1 allele. For both LCLs, the ratios between the wild type and mutant <it>RYR</it>1 alleles did not change after different incubation times with actinomycin D. This suggests that there are no allele-specific differences in RyR1 mRNA stability, at least in these cells.</p> <p>Conclusion</p> <p>The data presented here revealed for the first time allele-specific differences in <it>RYR</it>1 mRNA expression levels in heterozygous MHS samples, and can at least in part contribute to the observed variable penetrance and variations in MH clinical phenotypes.</p

    Zebrafish Models for Dyskeratosis Congenita Reveal Critical Roles of p53 Activation Contributing to Hematopoietic Defects through RNA Processing

    Get PDF
    Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA) processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis

    In Vivo Determination of Fluctuating Forces during Endosome Trafficking Using a Combination of Active and Passive Microrheology

    Get PDF
    BACKGROUND: Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. METHODOLOGY/PRINCIPAL FINDINGS: This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting magnetic endosomes act both as probes that can be manipulated with external magnetic fields to infer the viscoelastic modulus of their surrounding microenvironment, and as biological vehicles that are trafficked along the microtubule network by means of forces generated by molecular motors. The intracellular viscoelastic modulus exhibits power law dependence with frequency, which is microtubule and actin-dependent. The mean square displacements of endosomes do not follow the predictions of the fluctuation-dissipation theorem, which offers evidence for active force generation. Microtubule disruption brings the intracellular medium closer to thermal equilibrium: active forces acting on the endosomes depend on microtubule-associated motors. The power spectra of these active forces, deduced through the use of a generalized Langevin equation, show a power law decrease with frequency and reveal an actin-dependent persistence of the force with time. Experimental spectra have been reproduced by a simple model consisting in a series of force steps power-law distributed in time. This model enlightens the role of the cytoskeleton dependent force exerted on endosomes to perform intracellular trafficking. CONCLUSIONS/SIGNIFICANCE: In this work, the influence of cytoskeleton components and molecular motors on intracellular viscoelasticity and transport is addressed. The use of an original probe, the magnetic endosome, allows retrieving the power spectrum of active forces on these organelles thanks to interrelated active and passive measures. Finally a computational model gives estimates of the force itself and hence of the number of the motors pulling on endosomes

    Pilot randomized trial of therapeutic hypothermia with serial cranial ultrasound and 18-22 month follow-up for neonatal encephalopathy in a low resource hospital setting in Uganda: study protocol

    Get PDF
    Background: There is now convincing evidence that in industrialized countries therapeutic hypothermia for perinatal asphyxial encephalopathy increases survival with normal neurological function. However, the greatest burden of perinatal asphyxia falls in low and mid-resource settings where it is unclear whether therapeutic hypothermia is safe and effective.Aims: Under the UCL Uganda Women's Health Initiative, a pilot randomized controlled trial in infants with perinatal asphyxia was set up in the special care baby unit in Mulago Hospital, a large public hospital with similar to 20,000 births in Kampala, Uganda to determine:(i) The feasibility of achieving consent, neurological assessment, randomization and whole body cooling to a core temperature 33-34 degrees C using water bottles(ii) The temperature profile of encephalopathic infants with standard care(iii) The pattern, severity and evolution of brain tissue injury as seen on cranial ultrasound and relation with outcome(iv) The feasibility of neurodevelopmental follow-up at 18-22 months of ageMethods/Design: Ethical approval was obtained from Makerere University and Mulago Hospital. All infants were in-born. Parental consent for entry into the trial was obtained. Thirty-six infants were randomized either to standard care plus cooling (target rectal temperature of 33-34 degrees C for 72 hrs, started within 3 h of birth) or standard care alone. All other aspects of management were the same. Cooling was performed using water bottles filled with tepid tap water (25 degrees C). Rectal, axillary, ambient and surface water bottle temperatures were monitored continuously for the first 80 h. Encephalopathy scoring was performed on days 1-4, a structured, scorable neurological examination and head circumference were performed on days 7 and 17. Cranial ultrasound was performed on days 1, 3 and 7 and scored. Griffiths developmental quotient, head circumference, neurological examination and assessment of gross motor function were obtained at 18-22 months.Discussion: We will highlight differences in neonatal care and infrastructure that need to be taken into account when considering a large safety and efficacy RCT of therapeutic hypothermia in low and mid resource settings in the future

    Malignant hyperthermia

    Get PDF
    Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000–100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals. MH affects humans, certain pig breeds, dogs, horses, and probably other animals. The classic signs of MH include hyperthermia to marked degree, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. Early recognition of the signs of MH, specifically elevation of end-expired carbon dioxide, provides the clinical diagnostic clues. In humans the syndrome is inherited in autosomal dominant pattern, while in pigs in autosomal recessive. The pathophysiologic changes of MH are due to uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation. Due to ATP depletion, the muscle membrane integrity is compromised leading to hyperkalemia and rhabdomyolysis. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 90 mutations have been identified in the RYR-1 gene located on chromosome 19q13.1, and at least 25 are causal for MH. Diagnostic testing relies on assessing the in vitro contracture response of biopsied muscle to halothane, caffeine, and other drugs. Elucidation of the genetic changes has led to the introduction, on a limited basis so far, of genetic testing for susceptibility to MH. As the sensitivity of genetic testing increases, molecular genetics will be used for identifying those at risk with greater frequency. Dantrolene sodium is a specific antagonist of the pathophysiologic changes of MH and should be available wherever general anesthesia is administered. Thanks to the dramatic progress in understanding the clinical manifestation and pathophysiology of the syndrome, the mortality from MH has dropped from over 80% thirty years ago to less than 5%

    Urinary C-Peptide Measurement as a Marker of Nutritional Status in Macaques

    Get PDF
    Studies of the nutritional status of wild animals are important in a wide range of research areas such as ecology, behavioural ecology and reproductive biology. However, they have so far been strongly limited by the indirect nature of the available non-invasive tools for the measurement of individual energetic status. The measurement of urinary C-peptide (UCP), which in humans and great apes shows a close link to individual nutritional status, may be a more direct, non-invasive tool for such studies in other primates as well and possibly even in non-primate mammals. Here, we test the suitability of UCPs as markers of nutritional status in non-hominid primates, investigating relationships between UCPs and body-mass-index (BMI), skinfold fatness, and plasma C-peptide levels in captive and free-ranging macaques. We also conducted a food reduction experiment, with daily monitoring of body weight and UCP levels. UCP levels showed significant positive correlations with BMI and skinfold fatness in both captive and free-ranging animals and with plasma C-peptide levels in captive ones. In the feeding experiment, UCP levels were positively correlated with changes in body mass and were significantly lower during food reduction than during re-feeding and the pre-experimental control condition. We conclude that UCPs may be used as reliable biomarkers of body condition and nutritional status in studies of free-ranging catarrhines. Our results open exciting opportunities for energetic studies on free-ranging primates and possibly also other mammals

    Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease

    Get PDF
    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease

    Genomic and gene expression profiling of minute alterations of chromosome arm 1p in small-cell lung carcinoma cells

    Get PDF
    Genetic alterations occurring on human chromosome arm 1p are common in many types of cancer including lung, breast, neuroblastoma, pheochromocytoma, and colorectal. The identification of tumour suppressors and oncogenes on this arm has been limited by the low resolution of current technologies for fine mapping. In order to identify genetic alterations on 1p in small-cell lung carcinoma, we developed a new resource for fine mapping segmental DNA copy number alterations. We have constructed an array of 642 ordered and fingerprint-verified bacterial artificial chromosome clones spanning the 120 megabase (Mb) 1p arm from 1p11.2 to p36.33. The 1p arm of 15 small-cell lung cancer cell lines was analysed at sub-Mb resolution using this arm-specific array. Among the genetic alterations identified, two regions of recurrent amplification emerged. They were detected in at least 45% of the samples: a 580 kb region at 1p34.2–p34.3 and a 270 kb region at 1p11.2. We further defined the potential importance of these genomic amplifications by analysing the RNA expression of the genes in these regions with Affymetrix oligonucleotide arrays and semiquantitative reverse transcriptase–polymerase chain reaction. Our data revealed overexpression of the genes HEYL, HPCAL4, BMP8, IPT, and RLF, coinciding with genomic amplification
    corecore