64 research outputs found
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Top quark forward-backward asymmetry in R-parity violating supersymmetry
The interaction of bottom squark-mediated top quark pair production,
occurring in the R-parity violating minimal supersymmetric standard model
(MSSM), is proposed as an explanation of the anomalously large
forward-backward asymmetry (FBA) observed at the Tevatron. We find that this
model can give a good fit to top quark data, both the inclusive and invariant
mass-dependent asymmetries, while remaining consistent (at the 2-
level) with the total and differential production cross-sections. The scenario
is challenged by strong constraints from atomic parity violation (APV), but we
point out an extra diagram for the effective down quark-Z vertex, involving the
same coupling constant as required for the FBA, which tends to weaken the APV
constraint, and which can nullify it for reasonable values of the top squark
masses and mixing angle. Large contributions to flavor-changing neutral
currents can be avoided if only the third generation of sparticles is light.Comment: 24 pages, 7 figures. v3: included LHC top production cross section
data; model still consistent at 2 sigma leve
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level
Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP+ HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment
Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways
<p>Abstract</p> <p>Background</p> <p>Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro.</p> <p>Methods</p> <p>Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis.</p> <p>Results</p> <p>In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis.</p> <p>Conclusion</p> <p>Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy.</p
Year in review 2007: Critical Care – multiple organ failure and sepsis
Several research papers published in Critical Care throughout 2007 examined the pathogenesis, diagnosis, treatment and prognosis of sepsis and multiorgan failure. The present review summarizes the findings and implications of the papers published on sepsis and multiorgan failure and places the research in the context of other work in the field
A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity
Non-steroidal anti-inflammatory drugs (NSAIDs) represent a diverse class of drugs and are among the most commonly used analgesics for arthritic pain worldwide, though long-term use is associated with a spectrum of adverse effects. The introduction of cyclooxygenase-2-selective NSAIDs early in the last decade offered an alternative to traditional NSAIDs with similar efficacy and improved gastrointestinal tolerability; however, emerging concerns about cardiovascular safety resulted in the withdrawal of two agents (rofecoxib and valdecoxib) in the mid-2000s and, subsequently, in an overall reduction in NSAID use. It is now understood that all NSAIDs are associated with some varying degree of gastrointestinal and cardiovascular risk. Guidelines still recommend their use, but little is known of how patients use these agents. While strategies and guidelines aimed at reducing NSAID-associated complications exist, there is a need for evidence-based algorithms combining cardiovascular and gastrointestinal factors that can be used to aid treatment decisions at an individual patient level
Flavor Symmetric Sectors and Collider Physics
We discuss the phenomenology of effective field theories with new scalar or
vector representations of the Standard Model quark flavor symmetry group,
allowing for large flavor breaking involving the third generation. Such field
content can have a relatively low mass scale \lesssim TeV and O(1) couplings to
quarks, while being naturally consistent with both flavor violating and flavor
diagonal constraints. These theories therefore have the potential for early
discovery at LHC, and provide a flavor safe "tool box" for addressing anomalies
at colliders and low energy experiments. We catalogue the possible flavor
symmetric representations, and consider applications to the anomalous Tevatron
t-tbar forward backward asymmetry and B_s mixing measurements, individually or
concurrently. Collider signatures and constraints on flavor symmetric models
are also studied more generally. In our examination of the t-tbar forward
backward asymmetry we determine model independent acceptance corrections
appropriate for comparing against CDF data that can be applied to any model
seeking to explain the t-tbar forward backward asymmetry.Comment: 71 pages, 14 Figures, 12 Table
FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors
BACKGROUND: About 10–15% of adult, and most pediatric, gastrointestinal stromal tumors (GIST) lack mutations in KIT, PDGFRA, SDHx, or RAS pathway components (KRAS, BRAF, NF1). The identification of additional mutated genes in this rare subset of tumors can have important clinical benefit to identify altered biological pathways and select targeted therapies. METHODS: We performed comprehensive genomic profiling (CGP) for coding regions in more than 300 cancer-related genes of 186 GISTs to assess for their somatic alterations. RESULTS: We identified 24 GIST lacking alterations in the canonical KIT/PDGFRA/RAS pathways, including 12 without SDHx alterations. These 24 patients were mostly adults (96%). The tumors had a 46% rate of nodal metastases. These 24 GIST were more commonly mutated at 7 genes: ARID1B, ATR, FGFR1, LTK, SUFU, PARK2 and ZNF217. Two tumors harbored FGFR1 gene fusions (FGFR1–HOOK3, FGFR1–TACC1) and one harbored an ETV6–NTRK3 fusion that responded to TRK inhibition. In an independent sample set, we identified 5 GIST cases lacking alterations in the KIT/PDGFRA/SDHx/RAS pathways, including two additional cases with FGFR1–TACC1 and ETV6–NTRK3 fusions. CONCLUSIONS: Using patient demographics, tumor characteristics, and CGP, we show that GIST lacking alterations in canonical genes occur in younger patients, frequently metastasize to lymph nodes, and most contain deleterious genomic alterations, including gene fusions involving FGFR1 and NTRK3. If confirmed in larger series, routine testing for these translocations may be indicated for this subset of GIST. Moreover, these findings can be used to guide personalized treatments for patients with GIST. Trial registration NCT 02576431. Registered October 12, 2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-016-1075-6) contains supplementary material, which is available to authorized users
Expert consensus document:Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted
Non-target impact of chlorpyrifos on soil arthropods associated with no-tillage cornfields in Brazil
- …
