24 research outputs found

    Life Expectancy at Birth for People with Serious Mental Illness and Other Major Disorders from a Secondary Mental Health Care Case Register in London

    Get PDF
    Despite improving healthcare, the gap in mortality between people with serious mental illness (SMI) and general population persists, especially for younger age groups. The electronic database from a large and comprehensive secondary mental healthcare provider in London was utilized to assess the impact of SMI diagnoses on life expectancy at birth.People who were diagnosed with SMI (schizophrenia, schizoaffective disorder, bipolar disorder), substance use disorder, and depressive episode/disorder before the end of 2009 and under active review by the South London and Maudsley NHS Foundation Trust (SLAM) in southeast London during 2007-09 comprised the sample, retrieved by the SLAM Case Register Interactive Search (CRIS) system. We estimated life expectancy at birth for people with SMI and each diagnosis, from national mortality returns between 2007-09, using a life table method.A total of 31,719 eligible people, aged 15 years or older, with SMI were analyzed. Among them, 1,370 died during 2007-09. Compared to national figures, all disorders were associated with substantially lower life expectancy: 8.0 to 14.6 life years lost for men and 9.8 to 17.5 life years lost for women. Highest reductions were found for men with schizophrenia (14.6 years lost) and women with schizoaffective disorders (17.5 years lost).The impact of serious mental illness on life expectancy is marked and generally higher than similarly calculated impacts of well-recognised adverse exposures such as smoking, diabetes and obesity. Strategies to identify and prevent causes of premature death are urgently required

    Impact of diabetes mellitus on life expectancy and health-adjusted life expectancy in Canada

    No full text
    <p>Abstract</p> <p>The objectives of this study were to estimate life expectancy (LE) and health-adjusted life expectancy (HALE) for Canadians with and without diabetes and to evaluate the impact of diabetes on population health using administrative and survey data.</p> <p>Mortality data from the Canadian Chronic Disease Surveillance System (2004 to 2006) and Health Utilities Index data from the Canadian Community Health Survey (2000 to 2005) were used. Life table analysis was applied to calculate LE, HALE, and their confidence intervals using the Chiang and the adapted Sullivan methods.</p> <p>LE and HALE were significantly lower among people with diabetes than for people without the disease. LE and HALE for females without diabetes were 85.0 and 73.3 years, respectively (males: 80.2 and 70.9 years). Diabetes was associated with a loss of LE and HALE of 6.0 years and 5.8 years, respectively, for females, and 5.0 years and 5.3 years, respectively, for males, living with diabetes at 55 years of age. The overall gains in LE and HALE after the hypothetical elimination of prevalent diagnosed diabetes cases in the population were 1.4 years and 1.2 years, respectively, for females, and 1.3 years for both LE and HALE for males.</p> <p>The results of the study confirm that diabetes is an important disease burden in Canada impacting the female and male populations differently. The methods can be used to calculate LE and HALE for other chronic conditions, providing useful information for public health researchers and policymakers.</p

    Diabetes duration and health-related quality of life in individuals with onset of diabetes in the age group 15-34 years - a Swedish population-based study using EQ-5D

    Get PDF
    Background: Diabetes with onset in younger ages affects both length of life and health status due to debilitating and life-threatening long-term complications. In addition, episodes and fear of hypoglycaemia and of long-term consequences may have a substantial impact on health status. This study aims to describe and analyse health-related quality of life (HRQoL) in individuals with onset of diabetes at the age of 15-34 years and with a disease duration of 1, 8, 15 and 24 years compared with control individuals matched for age, sex and county of residence. Methods: Cross-sectional study of 839 individuals with diabetes and 1564 control individuals. Data on socioeconomic status and HRQoL using EQ-5D were collected by a postal questionnaire. Insulin treatment was self-reported by 94% of the patients, the majority most likely being type 1. Results: Individuals with diabetes reported lower HRQoL, with a significantly lower mean EQ VAS score in all cohorts of disease duration compared with control individuals for both men and women, and with a significantly lower EQ-5D(index) for women, but not for men, 15 years (0.76, p = 0.022) and 24 years (0.77, p = 0.016) after diagnosis compared with corresponding control individuals. Newly diagnosed individuals with diabetes reported significantly more problems compared with the control individuals in the dimension usual activities (women: 13.2% vs. 4.0%, p = 0.048; men: 11.4% vs. 4.1%, p = 0.033). In the other dimensions, differences between individuals with diabetes and control individuals were found 15 and 24 years after diagnosis: for women in the dimensions mobility, self-care, usual activities and pain/discomfort and for men in the dimension mobility. Multivariable regression analysis showed that diabetes duration, being a woman, having a lower education and not being married or cohabiting had a negative impact on HRQoL. Conclusions: Our study confirms the negative impact of diabetes on HRQoL and that the difference to control individuals increased by disease duration for women with diabetes. The small difference one year after diagnosis could imply a good management of diabetes care and a relatively quick adaptation. Our results also indicate that gender differences still exist in Sweden, despite modern diabetes treatment and management in Sweden
    corecore