700 research outputs found

    Transatlantic lipid guideline divergence: same data but different interpretations

    Get PDF
    Despite consensus that excessive circulating concentrations of apoB-lipoproteins is a key driver for the atherosclerotic process and that treatments that low-density lipoprotein cholesterol lowering by up-regulation of low-density lipoprotein cholesterol receptor expression reduces that risk, divergent viewpoints on interpretation of study data have resulted in substantial differences in European and American lipid guideline recommendations. This article explores those differences and highlights the importance of understanding guideline-based lipid management to improve patient care and reduce the risk of clinical atherosclerotic cardiovascular disease

    Simplest Prussian-blue deposition from ferric ferricyanide solution by a reducing Ag spot put onto an ITO substrate

    Get PDF
    This article was published in the Journal of Solid State Electrochemistry [© Springer-Verlag] and the definitive version is available at: http://dx.doi.org/10.1007/s10008-012-1811-7Prussian-blue (PB) film for electro-chromism can be electro-deposited on to an electrode (usually tin-doped indium oxide/glass) either directly from a PB colloid or from ferric ferricyanide in a two-electrode electro-chemical cell by applying a reductive potential. Alternatively, a “sacrificial” electron-producing silver flag electrode in the solution, when connected to the PB-receiving electrode, can effect the required reductive deposition. A silver spot, here innovatively applied as silver paint directly onto the deposition electrode, produces PB film on immersion in the iron(III)(III) solution, obviating the separate counter-electrode method

    Addressing ethnic disparities in neurological research in the United Kingdom: An example from the prospective multicentre COVID-19 Clinical Neuroscience Study

    Get PDF
    \ua9 2024 The Author(s). Background: Minority ethnic groups have often been underrepresented in research, posing a problem in relation to external validity and extrapolation of findings. Here, we aimed to assess recruitment and retainment strategies in a large observational study assessing neurological complications following SARS-CoV-2 infection. Methods: Participants were recruited following confirmed infection with SARS-CoV-2 and hospitalisation. Self-reported ethnicity was recorded alongside other demographic data to identify potential barriers to recruitment. Results: 807 participants were recruited to COVID-CNS, and ethnicity data were available for 93.2%. We identified a proportionate representation of self-reported ethnicity categories, and distribution of broad ethnicity categories mirrored individual centres’ catchment areas. White ethnicity within individual centres ranged between 44.5% and 89.1%, with highest percentage of participants with non-White ethnicity in London-based centres. Examples are provided how to reach potentially underrepresented minority ethnic groups. Conclusions: Recruitment barriers in relation to potentially underrepresented ethnic groups may be overcome with strategies identified here

    Hypoxia induces differential translation of enolase/MBP-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxic microenvironments in tumors contribute to transformation, which may alter metabolism, growth, and therapeutic responsiveness. The α-enolase gene encodes both a glycolytic enzyme (α-enolase) and a DNA-binding tumor suppressor protein, c-myc binding protein (MBP-1). These divergent α-enolase gene products play central roles in glucose metabolism and growth regulation and their differential regulation may be critical for tumor adaptation to hypoxia. We have previously shown that MBP-1 and its binding to the c-myc P<sub>2 </sub>promoter regulates the metabolic and cellular growth changes that occur in response to altered exogenous glucose concentrations.</p> <p>Results</p> <p>To examine the regulation of α-enolase and MBP-1 by a hypoxic microenvironment in breast cancer, MCF-7 cells were grown in low, physiologic, or high glucose under 1% oxygen. Our results demonstrate that adaptation to hypoxia involves attenuation of MBP-1 translation and loss of MBP-1-mediated regulation of c-myc transcription, evidenced by decreased MBP-1 binding to the c-myc P<sub>2 </sub>promoter. This allows for a robust increase in c-myc expression, "early c-myc response", which stimulates aerobic glycolysis resulting in tumor acclimation to oxidative stress. Increased α-enolase mRNA and preferential translation/post-translational modification may also allow for acclimatization to low oxygen, particularly under low glucose concentrations.</p> <p>Conclusions</p> <p>These results demonstrate that malignant cells adapt to hypoxia by modulating α-enolase/MBP-1 levels and suggest a mechanism for tumor cell induction of the hyperglycolytic state. This important "feedback" mechanism may help transformed cells to escape the apoptotic cascade, allowing for survival during limited glucose and oxygen availability.</p

    Growth Differentiation Factor 15 Is Induced by Hepatitis C Virus Infection and Regulates Hepatocellular Carcinoma-Related Genes

    Get PDF
    Liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) are commonly induced by chronic hepatitis C virus (HCV) infection. We aimed to identify and characterize the involvement of previously screened cytokine GDF15 in HCV pathogenesis. We examined the GDF15 expression after HCV infection both in vitro and in vivo. Cultured JFH-1 HCV was used to determine the GDF15 function on virus propagation. GDF15 overexpression and RNA interference were employed to profile the GDF15-regulated genes, signaling pathways and cell biology phenotypes. The mRNA expression and protein secretion of GDF15 was dramatically increased in HCV-infected hepatoma cells, which maybe a host response to viral proteins or infection-induced cell stress. Patients infected with HCV had an average 15-fold higher blood GDF15 level than that of healthy volunteers. Three HCC individuals in the HCV cohort showed extremely high GDF15 concentrations. Transfection or exogenously supplied GDF15 enhanced HCV propagation, whereas knockdown of endogenous GDF15 resulted in inhibition of virus replication. Overexpressed GDF15 led to Akt activation and the phosphorylation of Akt downstream targeted GSK-3β and Raf. Several HCC-related molecules, such as E-cadherin, β-catenin, Cyclin A2/B1/D1, were up-regulated by GDF15 stimulation in vitro. Overexpression of GDF15 in hepatoma cells resulted in increased DNA synthesis, promoted cell proliferation, and importantly enhanced invasiveness of the cells. In conclusion, these results suggest that an elevated serum GDF15 level is a potential diagnostic marker for viral hepatitis, and GDF15 may contribute to HCV pathogenesis by altering the signaling and growth of host cells

    Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and EmissionSpectroscopy Study

    Get PDF
    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements

    Dynamics of Vulmar/VulMITE group of transposable elements in Chenopodiaceae subfamily Betoideae

    Get PDF
    Transposable elements are important factors driving plant genome evolution. Upon their mobilization, novel insertion polymorphisms are being created. We investigated differences in copy number and insertion polymorphism of a group of Mariner-like transposable elements Vulmar and related VulMITE miniature inverted-repeat transposable elements (MITEs) in species representing subfamily Betoideae. Insertion sites of these elements were identified using a modified transposon display protocol, allowing amplification of longer fragments representing regions flanking insertion sites. Subsequently, a subset of TD fragments was converted into insertion site-based polymorphism (ISBP) markers. The investigated group of transposable elements was the most abundant in accessions representing the section Beta, showing intraspecific insertion polymorphisms likely resulting from their recent activity. In contrast, no unique insertions were observed for species of the genus Beta section Corollinae, while a set of section-specific insertions was observed in the genus Patellifolia, however, only two of them were polymorphic between P. procumbens and P. webbiana. We hypothesize that Vulmar and VulMITE elements were inactivated in the section Corollinae, while they remained active in the section Beta and the genus Patellifolia. The ISBP markers generally confirmed the insertion patterns observed with TD markers, including presence of distinct subsets of TE insertions specific to Beta and Patellifolia

    Does delayed measurement affect patient reports of provider performance? Implications for performance measurement of medical assistance with tobacco cessation: A Dental PBRN study

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>We compared two methods of measuring provider performance of tobacco control activities: immediate "exit cards" versus delayed telephone follow-up surveys. Current standards, e.g. HEDIS, use delayed patient measures that may over or under-estimate overall performance.</p> <p>Methods:</p> <p>Patients completed exit cards in 60 dental practices immediately after a visit to measure whether the provider "asked" about tobacco use, and "advised" the patient to quit. One to six months later patients were asked the same questions by telephone survey. Using the exit cards as the standard, we quantified performance and calculated sensitivity (agreement of those responding yes on telephone surveys compared with exit cards) and specificity (agreement of those responding no) of the delayed measurement.</p> <p>Results:</p> <p>Among 150 patients, 21% reporting being asked about tobacco use on the exit cards and 30% reporting being asked in the delayed surveys. The sensitivity and specificity were 50% and 75%, respectively. Similarly, among 182 tobacco users, 38% reported being advised to quit on the exit cards and this increased to 51% on the delayed surveys. The sensitivity and specificity were 75% and 64%, respectively. Increasing the delay from the visit to the telephone survey resulted in increasing disagreement.</p> <p>Conclusion:</p> <p>Patient reports differed considerably in immediate versus delayed measures. These results have important implications because they suggest that our delayed measures may over-estimate performance. The immediate exit cards should be included in the armamentarium of tools for measuring providers' performance of tobacco control, and perhaps other service delivery.</p
    corecore